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Article info:  Abstract 
Using differential quadrature method, this study investigated pull-in 

instability of beam-type nano-switches under the effects of small-scale and 

intermolecular forces including the van der Waals and the Casimir forces. In 

these nano-switches, electrostatic forces were served as the driving force, and 

von-Karman type nonlinear strain was used to examine nonlinear geometric 

effects. To derive nonlinear governing equations as well as the related 

boundary conditions for the nano-beam, variation method was used. Besides, 

to study the influence of size effect, the nonlocal elasticity theory was 

employed and the resulting governing equations were solved using 

differential quadrature method. Finally, the pull-in parameters were studied 

using the nonlocal theory and the results were compared with the numerical 

results of the classical continuum theory as well as experimental results 

contained in the references. Results demonstrated that taking into 

consideration the von-Karman type nonlinear strain increases the beam 

stiffness and hence, the pull-in voltage. Besides, use of the small scale, 

compared with the classical theory of elasticity, yields results much closer to 

experimental results. 
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1. Introduction 
 

Micro-electro-mechanical systems (MEMS) is a 

process technology used to create small integrated 

devices or systems that combine mechanical and 

electrical components. They are fabricated through a 

mix of integrated circuit manufacturing and micro-

machining process and can range in size from a few 

micrometers to millimeters. These devices have the 

ability to sense, control and actuate on the micro 

scale. Nano-electro-mechanical systems (NEMS) 

are structures and mechanisms with nano-

dimensions which serve as nano-switches to convert 

electrical energy into mechanical energy and as 

sensors to convert mechanical energy into electrical 

energy. The development of such nanostructure in 

sciences such as communication, electronics, 

medicine, aerospace, military, robotics, chemistry, 

and optics has resulted in new achievements. On the 

other hand, the need to investigate and predict the 

mechanical behavior of these structures has opened 

a new window for researchers in the field of 

mechanics [1,2]. The simplest nano-electro-

mechanical actuator is a beam-type mechanism 

consisting of two conductive electrodes in the 

nanoscale of which one is usually fixed and the other 
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is movable [3, 4]. This simple system can be found 

in systems such as nano-switches and nano-relays 

[5]. Applying opposite voltages to two electrodes 

causes electrostatic attraction between them. This 

attraction causes the fixed electrode to strain toward 

the movable electrode [6, 7]. If the bending moment 

resulting from the electrostatic force is higher than 

the one the nano-beam can withstand, the movable 

electrode collapses on the fixed one. This 

phenomenon is known as pull-in instability. 

Prediction and simulation of the pull-in instability of 

MEMS/NEMS are very crucial for reliable design 

and fabrication of nano-devices. Hence, it is highly 

important to investigate and understand this 

phenomenon and factors involved in it. It has 

received great attention by the researchers [8,9].  

It should be noted that in nanoscale, in comparison 

with the macro scale, other phenomena appear which 

must be taken into consideration in modeling. Given 

the fact that nano-switches have nano dimensions, 

this study models the effects of two new phenomena, 

i.e. the small scale effect and intermolecular forces. 

The study also investigates the nonlinear 

geometrical effects which have a great impact on the 

results of studies of instability in nanostructures.  

The first phenomenon which substantially influences 

the mechanical behavior of nanobeams is small scale 

effect. The effect of small scale in the nanoscale has 

been proven by different researchers using 

laboratory experiments. Also, in recent years, in 

addition to laboratory experiments, some methods 

such as molecular dynamic (MD) have been used to 

simulate and examine size effects. Besides, given the 

fact that methods such as MD are costly and include 

lengthy calculations, in recent years, in order to 

examine the mechanical behavior in nanostructure, 

researchers have used non-classical continuum 

theories such as the nonlocal [9-11], strain gradient 

[12-16], and couple stress [17-21] theories, which 

have the ability to model size effects. This paper uses 

the nonlocal theory to investigate the pull-in 

instability in which the small scale effect is included.  

The second phenomenon which drastically 

influences the mechanical behavior of nanobeams is 

the presence of intermolecular forces.Intermolecular 

forces in nanoscale are the van der Waals and 

Casimir forces. The van der Waals force gains 

significance when the gap between the two 

electrodes is narrower than a few tens of nanometers 

[22]. This force changes with the inverse cube of the 

gap between the two electrodes. The Casimir force 

is the most famous mechanical effect of vacuum 

fluctuations. An important physical quantity related 

to the Casimir force is field radiation pressure. Each 

field, even vacuum, contains energy. All magnetic 

fields are capable of being released into space and 

put pressure on surfaces. This radiation pressure has 

a direct relationship with energy and, as a result, with 

the frequency of the magnetic field. In the hole’s 

resonance frequency, the radiation pressure is 

stronger inside than outside; hence, the surfaces 

repel each other. Conversely, in non-resonance 

conditions, the radiation pressure outside the hole is 

stronger, and the electrodes are attracted to each 

other. In a state of balance, the repulsion components 

are rather stronger than the attraction components. 

Therefore, for two fully parallel flat electrodes, the 

Casimir force is an attraction and the electrodes 

attract each other. This force is proportionate to the 

cross-sectional area of the electrodes and the inverse 

fourth power of the gap between the electrodes. 

Except for geometrical quantities, this force only 

depends upon the basic values of Planck’s constant 

and the speed of light [23]. Considering the effects 

of intermolecular forces in the nano scale, different 

researchers have investigated the effects of these 

forces on nanostructures [24-28]. 

Finally, it should be noted that many researchers 

have studied the small-scale effect phenomena and 

intermolecular forces for nanostructures. This paper, 

however, examines small-scale effects and 

intermolecular forces in beam-type nano-switches. 

In so doing, the non-classical, non-local theory is 

used. In this paper, besides the two phenomena made 

in nanoscale, the nonlinear geometric effects and the 

nonlocal theory are also used to investigate the pull-

in instability in beam-type nano-switches.No study 

has so far examined nano-switches using the 

nonlocal elasticity theory and DQM while 

considering the nonlinear geometric effect. Hence, 

this paper attempts to address that issue. For this 

purpose, variations method and minimum potential 

energy are used. Equations of motion, as well as 

boundary conditions,are derived and, finally, DQM 

is employed to solve the equations. The findings 

revealed that taking nonlinear displacements into 

consideration causes an increase in pull-in 

instability. The significant result of the study is that 

using a small scale and nonlinear nonlocal theory 

leads to the results very consistent with experimental 

results regarding the classical theory of elasticity, 

which shows the high efficiency of the nonlinear 

model used with DQM. 

 

2. Preliminaries 
 

2.1. Nonlocal continuum theory 

 
According to the classical continuum theory, stress 

at one point of an object is simply a function of the 
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strain at that point. In 1983,Eringen and Edelen 

published papers and put forth a new theory, 

demonstrating that stress at one point of an object 

may be a function of strain all over the object [29]. 

Accordingly, they formulated the nonlocal 

continuum theory. In fact, in this theory, the small 

scale effect, which was hitherto ignored in 

continuum theories, was introduced as a parameter 

effective in the stress field (for more information see 

Appendix). In the following years and concurrent 

with the emergence of micro/nano-electro-

mechanical systems in different branches of science, 

the nonlocal theory, as a continuum theory able to 

predict the behavior of these systems by considering 

the aforementioned factor, appealed to researchers 

and scientists. According to this theory, the nonlocal 

stress tensor at an arbitrary point of an object is as 

follows [30]: 

(1)    
V

σ = K x - x ,τ  S x dx  
 

whereσ  is the nonlocal stress tensor at point x, 

K x - x is the kernel function, τ is the material 

constant which is dependent on length, internal and 

external characteristic and  x S is the classical 

stress tensor [12]. It is known that the relationship 

between stress and strain in a Hookean solid with 

Hook’s law is as follows: 

(2)      x = x : xS C ε 

where  :  stands for the double-dot product and C 

represents the fourth-order elasticity tensor. Eq. (1) 

has a simpler form which is much easier to use than 

the integrated form and is as follows:  

(3)    2 2 2 0e a
1- τ L Δ σ = S   ,  τ =

L
 

In this equation, 
0e , a and Lrepresent the material 

constant, the internal characteristic length and the 

external characteristic length, respectively. 

Assuming the material to be homogeneous and 

isotropic, by substituting Eq. (2) into Eq. (3), one can 

derive the stress-strain equation in general, and, for 

the one-dimensional case, the constitutive equation 

based on the nonlocal theory is as follows:  

(4) 
2

2 2xx
xx 0xx2

σ
σ - μ = Eε (μ = e a )     

x




 

where E represents Young’s modulus [31]. 

 

2.2. Euler–Bernoulli beam theory 

 
There are different theories for modeling nano-

beams. Here, the Euler-Bernoulli beam theory is 

used. In this theory, the displacement field is 

expressed as: 

 

(5) 

   

   

w
u x,z = u x - z   , 

x

v = 0 , 

w x,z =w x     




 

 

where u , v  and w are the components of the 

displacement field of a point in distance zfrom the 

middle surface of the beam in each beam section, and  

u and  w respectively stand for the values of axial 

displacement and traverse displacement in the 

middle surface of the beam. By considering von-

Karman-type nonlinear strain and dispensing with 

the Poisson’s effect, one can obtain the components 

of the strain tensor for the  Euler-Bernoulli beam 

where the only non-zero strain component is defined 

by non-linear geometrical effects (which are along 

the x-axis of the beam) as follows: 

 

(6) 
2

2
x 2

u w 1 w
ε = - z + ( )  

x 2 xx
  
 

 

In the above equation, 2
1 w

2 x

 
 
 

represents von-

Karman-type nonlinear strain [32]. 
 

3. Governing equations of motion 

 
Figure1 illustrates a nano-switch modeled with a 

clamped-free nano-beam. This system is made up of 

a fixed electrode called the ground plane and a 

movable electrode with a rectangular section with 

length L, height h and widthb. These two electrodes 

are separated by a dielectric spacer and an initial gap 

g.  
 

 
 

Fig. 1. Schematic model of a beam-type nano-

switch. 

 

As mentioned, in this paper, to derive the governing 

equations, variations method and the principle of 

minimum potential energy are used as follows: 
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(7)   0δ U -V  

 

In the above equation, Uand Vrepresent strain energy 

and the work of external forces, respectively. 

Considering the Euler-Bernoulli model, the strain 

energy in the nano-beam is expressed as: 

 

(8) 

L

xx xx

0 A

2L 2

xx 2

0 A

1
U = σ ε dA dx  

2

1 u w 1 w
=  σ - z +  dA dx    

2 x x 2 x

    
  
     

 

 

 
 

The above equation can be expressed as follows: 

(9) 

2L 2

x x 2

0

1 u 1 w w
U = N + - M  dx  

2 x 2 x x

     
          
 

 

Here the values of parameters 
  x xx

A

N dA 
and

 zx xx

A

M dA 
 are determined. On the other hand, the 

work of external force acting on the beam is 

expressed using the following integral: 

 

(10) 
L

0

V = qwdx               
 

 

In Eq. (10), qis the sum of the forces applied to the 

beam per unit length. 

By substituting Eqs. (10) and (8) into Eq. (7) , 

performing variation operations, and setting  δu and 

δw to zero, the equations of motion governing the 

system are derived as follows: 

 

(11) 
2

2

x

x

N
= 0

x

Mw
(N ) + +q = 0xx x x





 

  

 

 

Also, according to Fig. 1, the boundary conditions 

for the clamped-free beam are derived from the 

following equations: 

(12) 
   

   

w
w x = 0 = 0 , x = 0 = 0      

x

x = L M x 0Q = = L =



  

 

In the above equation, M and Qrepresent the bending 

moment and the shear force, respectively.  

From Eqs. (4) and (6), and by defining parameters 

Mxand Nx, one can express the normal resultant force 

and the bending moment as: 

(13) 

 
2

2 2

0 2

22
2

02

x
x

x
x

N u 1 w
N = e a + EA + ( )

x x 2 x

Mw
M = -EI +(e a)

2x x

 
 
 

 
 
 

  

  



 

 

 

By substituting Eqs. (11) into Eqs. (13), the value of 

the bending moment is obtained as: 

 

(14) 0

2
2

2x
w w

M = -EI - (e a) q + (N )xx xx

 
 
 

  

 
 

 

By substituting Eq. (14) into the boundary 

conditions (11), the following equations are 

obtained: 

 

(15) 

2 2

2 2

24 2 2 2

4 2 2 2

4 2 3
2

0 4 2 3

32 4 2 3 2

4 2 3 2

3 2 4

3 2 4

u w w
EA + = 0

x x x

w u w u w 3 w w
EI - EA + +

x x x x vx 2 x x

u w w w w
+(e a) EA + 9 +

x x x x x

3 w w w u w
+ 3 + 3

2 x x x x x

w u w u
3 +

x x x

   
 
   

        
  

        

     

    

      
  

       

   

   

 
2

2

0 2

x

q
= q - e a

x









 

 

The equations of motion in Eq. (15) can be reduced 

to a single equation by eliminatingu. For this 

purpose, by integration and double differentiation of 

the first equation of motion in Eq. (15), the following 

equations are derived [32,33]. 

 

 (16) 
0

21

2

L

2

4 2 3 4

4 2 3 4

dx
L

u 1 w w
= - ( ) + ( )

x 2 x x

u w w w w
= -3 -

xx x x x

  

  

    

   


 

 

Now, by substituting Eqs. (16) into Eq. (15), u can 

be eliminated and hence, the nonlinear equation of 

motion governing the nano-beam is derived as: 

 

(17) 

2

0

2

0

L

L

0 0

4 2

4 2

4 2
2 2

4

dx

dx

w w 1 w
EI - EA ( ) +

2L xx x

1 w w q
(e a) EA ( ) = q - (e a)

22L xx x
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The boundary conditions for the clamped-free nano-

beam are as follows: 

 

(18)  

 

x =0
x =0

x =L

x =L

x =L

x =L

L3 3
2 2

03 3

0

L2 2
2 2

02 2

0

Q =

w q 1 w w
-EI - e a + EA ( ) dx

x x 2L x x

M =

w 1 w w
-EI - e a q + EA ( ) dx = 0

w
w = 0 , = 0

x

= 0

x 2L x x

    
   
  





   

    

    
   


 

  

    
  





 

 

It should be noted that by setting the value of e0 to 

zero, the above equation is reduced to the governing 

equation of classical nonlinear beam, and, the 

integral term of the equation of motion has appeared 

due to the von-Karman-type nonlinear strain. 

Therefore, in order to investigate the results of linear 

displacements, by setting the integral term to zero, 

one can obtain the equation of motion in the linear 

case.  

In Eq. (19), qis the sum of intermolecular forces, 

Casimir or van der Waals or electrostatic forces 

applied to the nano-beam, which are expressed as:  

 

(19) cas vanele dis dis
q = q +q   ,  q = q   or  q 

 

The electrostatic forces with fringing field effects, 

and Casimir and van der Waals forces per unit length 

are expressed as [33]. 

 

(20) 

 

 

 

 

2

0

2

2

4

3

1 0.65
2

  
240

q
6

elec

cas

van

g wbV
q

bg w

cb
q

g w

Ab

g w







 
  

  







 

 

where 0 , V, w, , A and  c are permittivity of 

vacuum, applied voltage, beam transverse 

deflection, reduced Planck’s constant, Hamaker 

constant and light speed respectively. 

 

4.  Solution method (DQM) 

 
Along with the growing advancement of faster 

computing machines, the research is going to 

develop the new methods for numerical solution of 

problems in engineering and physical sciences. The 

numerical methods for the solution of initial or 

boundary-value problems, in general, seek to 

transform, either through a differential or an integral 

formulation into an analogous set of first-order or 

algebraic equations in terms of the discrete values of 

the field variable at some specified discrete points of 

the solution domain. The differential quadrature 

method is a numerical solution technique has been 

successfully employed in a variety of problems in 

engineering and physical sciences. The method has 

been projected by its proponents as a potential 

alternative to the conventional numerical solution 

techniques such as the finite difference and finite 

element methods. In order to solve the equation 

using DQM, first, the equation of motion and 

governing boundary conditions are made 

dimensionless. To do this, the following 

dimensionless parameters are defined:  

 

(21) 

4

3 4

2 42 4

0
4 5 3

2

0

w x AbL
ζ = ,  η = ,  α = ,

g L 6πg EI

ε bV Lπ cbL
α = ,   β = ,  

240g EI 2g EI

e ag g
γ = 0.65 ,  e = , f = 6

b L H

 
 
 

 

 

By substituting the dimensionless parameters from 

Eq. (21) into Eqs. (17) and (18), the dimensionless 

type of the nonlinear equation of motion and the 

boundary conditions of the nano-beam behavior are 

obtained as: 

 

 

(22) 

     

12 2
(4) 2 2

2 2

0

2
2 n

n 22

d ζ ζ
ζ - 1 - e f ( ) dη =

dη η η

αd β γβ
1 - e + +

dη 1 - ζ1 - ζ 1 - ζ

    
  

    

  
     


 

(23) 
13 3

2 2

3 3

0

12 2
2 2

2 2

0

0

1

1
0

( ) 0

( ) 0

 0

0

q
e f d

e q f d
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In Eq. (22), for the Casimir and van der Waals 

forces, n assumes the values 4 and 3, respectively. 

Then, after obtaining a dimensionless form of 

governing equations of the nano-beam, the DQM is 

used and the pull-in parameters are calculated.  

The main idea of the DQM is that the derivative of a 

function at a point in the domain can be 

approximated as the weighted summation of the 

function value at all points in the domain. Using this 

approximation, the differential equation is reduced 

to a series of algebraic equations. The number of 

algebraic equations depends on the number of 

sample points. In the DQM, the m-th derivative of 

the dimensionless transverse displacementζat each 

point such as ηiis approximated as follows [17,34]: 

 

(24) 
1

( )
m N

m

ij jm
i

d
C

d


 

 

 

 

where 
m

ijC is the weighted coefficient and Nis the 

number of nodes. The values of ηi are obtained as 

follows: 

 

(25) 

1

1 ( 1)
1 cos ,

2 1

 0.0  ,     1.0

j

N

j

N




 

 
   

 

 

 

Using Lagrange polynomial as the basic polynomial, 

the weighted coefficients for the first order 

derivative are obtained as: 

 

(26) 

(1) i
ij

i j j

N
(1) (1) (1)

ij ii ik

k =1

L(η )
C =  ,

(η - η )L(η )

(i, j = 1, 2, ...,N  ,  i j)

C = C = - C ,

(i, j = 1, ...,N;i k  , i = j)







 

 

Where 

 

(27) 
 
 

And, finally, the weighted coefficients for the higher 

order derivatives are defined as follows [33,34]: 

 

(28) 
 
 

Now, by substituting the above equations into Eq. 

(22), the equation of motion is changed into the 

following form through the DQM: 

 

(29)

 

 

 

(4) 2 (2)

ij j ij ij

N
(1) (1) (2)

j k ij j k ij j k ij j

k =1

C ζ - δ - e C

q + f C C ζ (η ) Ο C ζ (η ) C ζ = 0
  

        
  


 
 

where   is the Hadamard Matrix product. Also, 

coefficients Ckare calculated using Newton-Cotes 

integration as follows [35,36]: 

 

(30) 

1

10

N
i

k

i k i
i k

C d
 


 







  

 

Here, to apply the boundary conditions of the 

clamped-free beam, the CBCGE method, initially 

proposed by Shu and Du [37], is used. According to 

this method, first, using Eq. (28), the boundary 

conditions in Eq. (23) are rewritten as follows: 

 

(31) 

1 0   

(1) (1) (1)

1,1 1 1,2 2 1,3 3

(1)

1,.... 0N N

C C C

C

  



  

 
 

 

 

(3) (3) (3) (3)

,1 1 ,2 2 ,3 3 ,

2 (1) (1) (1)

,1 1 ,2 2 ,

2 (3) (3) (3)

,1 1 ,2 2 ,3 3

(3)

,

....

...

  

.... 0

N N N N N N

N N N N N

N N N

N N N

C C C C

e C q C q C q

e s f C C C

C

   

  



    

  

   

 

 

 

(2) (2) (2)

,1 1 ,2 2 ,3 3

(2) 2

,

2 (2) (2) (2)

,1 1 ,2 2 ,3 3

(2)

,

....

  

.... 0

N N N

N N N N

N N N

N N N

C C C

C e q

e s f C C C

C

  



  



   



   

 

 

 

By resolving the dimensionless displacement vector 

ζ, the Eqs. (31) can be rewritten in the following 

matrix form: 

1

( ) ( ),  (i j).
N

i i j

j

L   


  

( 1) (1) ( )

1

,  (p=1,2,...)
N

p p

ij ik kj

k

C C C
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(32) 

1

(1) (1) (1) (1)

1,1 1,2 1, 1 1, 2

(2) (2) (2) (2)

,1 ,2 , 1 , 1

(3) (3) (3) (3)

,1 ,2 , 1 ,

(1) (1) (1)

1,3 1,4 1, 2

(2) (2) (2)

,3 ,4 , 2

(3) (3

,3 ,4

1 0 0 0

0 0 ... 0

...

...

N N

N N N N N N N

N N N N N N N

N

N N N N

N N

C C C C

C C C C

C C C C

C C C

C C C

C C











 







   
   
    
   
   

  

 

3

4

) (3)

, 2 2

1

2 2

(2) (2) (2) (2)

,1 ,2 , 1 , 1

(3) (3) (3) (3)

,1 ,2 , 1 ,

2

(1) (1) (

,1 ,2 ,

...

0 0 0 0

0 0 0 0
  

0 0 ... 0

0 0 ... 0

0 0 ... 0

...

N N N

N N N N N N N

N N N N N N N

N N N N

C

e s f
C C C C

C C C C

e

C C C















 

 



   
   
    
   
   

  

  
  
   
  
  
    

 

1

2

1)

3

2 4

(2) (2) (2)

,3 ,4 , 2

(3) (3) (3)

,3 ,4 , 2 2

0 0 ... 0

0 0 ... 0
  0

...

...

N

N N N N

N N N N N

q

q

q

e s f
C C C

C C C









 

  
  
     
  
    

  
  
   
  
  
    

 

where  

(33) 

1

2 (1) (1)

10

( ) ( ) ( )  
N

k ij j k ij j k

k

s d C C C


    
 


        



 

By defining matrices of coefficients BA, BB, BC and 

BD, Eq. (32) is written as follows: 

 

(34) 

 

 

( ) ( ) 2 (A)

2 ( )

  

  { }

A B

A B C

B

D

B B e s f B

e s f B E q

     

  

 

where BA and BB are 4×4 order matrices, and BB and 

BD are (N-4)×4 order matrices. Also, vectors 
(A)

Ξ

and 
(B)

Ξ are as follows: 

 

(35) 

1 3

(A) (B)2 4

N -1

N N - 2

ζ ζ

ζ ζ
Ξ =  , Ξ =  

ζ M

ζ ζ

   
   
   
   
   
      

 

 

Now, the equation of motion (29) can be written as 

a matrix form, yielding the following equation: 

(36) (4)C Ξ -T( q + H) = 0  

where  

 

(37) 

2 (2) (2)

ij ij ij i ij j

i i

T = δ - e C , H = f × s × C ζ ,

Ξ = ζ

  

 

Like the equations of boundary conditions, the 

equation of motion in Eq. (36) can be rewritten based 

on the two displacement vectors (A)
Ξ and (B)

Ξ as 

follows: 
 

(38) (A) (B)

A BD Ξ + D Ξ -T( q + H) = 0  

 

where DA is a 4×4 matrix and DB is a N×(N-4) 

matrix. By substituting the equations of boundary 

conditions into Eq. (34) and equations of motion in 

Eq. (38), and using linear algebraic theorems, the 

governing equations of the beam as well as the 

clamped-free boundary conditions are obtained 

through the DQM as follows:  

 

(39) 

    
  

-1
2 2 (B)

D B A C B D

-1
2

B A C

D - D B + e  s f B B + e  s f B Ξ

- T + D B + e  s f B E q -TH = 0

   
   

 
 

 

The above equation can be summarized as:  

 

(40) (B)AΞ = G( q ) + M  ,  M =TH  

where A and G are modified matrices of the 

coefficients considering clamped-free boundary 

conditions. 

To solve Eq. (40), one must solve a system of two 

equations and two unknowns. Given that vector  q

is a function of the displacement vector Ξ , one has 

to use an iteration algorithm such as the Newton-

Raphson algorithm in programming software. The 

following is a summary of the process used in the 

present research to solve the nonlinear pull-in 

instability problem. 

1. For a certain value of β, with an initial 

assumption for vector Ξ , the values of vector

 q and M are determined. Then, the nonlinear 

Eq. (40) becomes a linear equation, and by 

solving this equation, the new displacement 

vector Ξ is calculated.  

2. By substituting the displacement vector resulting 

in stage 1 at the beginning of the cycle, vectors 

 q and M are modified and hence, at each point 

of the cycle, the displacement of points is 

updated.  
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3. Stages 1 and 2 are repeated until the following 

convergence condition is satisfied[33]. 

(41) 
 

 

2

i

2

i

(k)

(k +1)

Σ (ΔΞ )
0.0001

Σ (Ξ )

  

where krepresents the number of iteration of the 

Newton-Raphson method and   stands for the 

degree of variation of the components of the new 

displacement vector compared with the 

displacement vector of the previous stage. 

4. The value of the electrostatic force βapplied is 

increased and stages 1 to 3 are repeated for new 

input values. The increase of β is repeated until 

the slope of the nano-beam displacement curve 

in relation to the dimensionless voltage β 

approaches infinity, i.e. dζ

dβ


. The last value 

of the electrostatic force represents voltage βPI 

and the related displacement represents ζPI. 

 
5. Results and discussion 

 
This section is devoted to the investigation of 

different parameters affecting the nonlinear pull-in 

instability of the clamped-free beam-type nano-

beam. First, the effects of geometrical dimensions 

are examined and then, the small scale or the 

nonlocal theory is investigated. Afterward, the 

effects of Casimir and van der Waals forces on the 

pull-in instability of the nano-beam are evaluated. 

After that, to consider the intermolecular forces, the 

freestanding behavior in the nano-beam is studied 

and finally, the validity of the results of the present 

research and other studies, as well as experimental 

results,are evaluated. It should be noted that in the 

diagrams and figures presented in the following 

sections, considering Eq. (21), the dimensionless 

parameters ζ, η, α3, α4, β, and e stand for nano-beam 

deflection, the length of nano-beam, van der Waals 

force, Casimir force, applied voltage, and small scale 

in the nonlocal theory, respectively. 

 

5.1. Effect of geometrical dimensions 

 

In Fig. 2, the nano-beam deformation is displayed 

based on the different values of the applied voltage 

β. As the voltage increases, the values of electrostatic 

force and beam displacement increase, too. It can be 

seen from Fig. 2 that as the applied voltage reaches 

up to β=1.118 if the linear model is used, the 

movable electrode collapses on the fixed electrode 

and the pull-in modification takes place, whereas if 

the same voltage is applied in the nonlinear model, 

the pull-in modification does not occur. In other 

words, it could be argued that considering the 

nonlinear geometric effects leads to an increase in 

the pull-in voltage. It should be noted that in the 

nonlinear case, the value of fis taken as 37.5. 

Fig. 2. Beam deformation for different values of β 

for g/b=α3=0.5, e=0.3. 

 

As regards the equation of motion, two geometrical 

parameters appear in this equation, showing the 

geometrical conditions governing the problem. The 

first parameter is the ratio of separation gap to the 

beam width, i.e. g/b. This ratio is the second term 

coefficient of the electrostatic force, known as 

fringing field effect. In fact, this parameter is a 

criterion which can be altered to compare the 

instability behavior of the narrow beam with that of 

the wide beam. The second parameter is ‘f’ which, 

as mentioned before, is entered the equation of 

motion due to the consideration of von-Karman-type 

nonlinear strain. Figure 3 simultaneously illustrates 

the effects of these two parameters on beam 

deformation.As displayed by Fig. 3, as the value of 

g/b increases or the beam narrows, the force 

resulting from the fringing fields increases, and 

consequently, the nano-beam develops a greater 

tendency for deformation. In other words, the beam 

stiffness has a reverse relationship with the value of 

this ratio. However, by contrast, the value of ‘f’ 

reduces beam deformation; therefore, this value has 

a direct relationship with the beam stiffness. 
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Fig. 3. Effects of fringing fields and the coefficient 

of nonlinear effects on beam deformation, assuming 

α4=β=0.7 and e=0.4. 

 

In Fig. 4 and 5, the effects of two geometrical 

parameters on the pull-in voltage are illustrated by 

considering the Casimir and van der Waals forces, 

respectively. As illustrated by Fig. 4, as the g/b value 

increases or the beam narrows, the pull-in voltage 

decrease and beam deformation increases. Also, as 

can be seen in Fig. 4, the higher the value of the small 

scale, the higher the pull-in voltage. As illustrated in 

Fig. 5, in the presence of the van der Waals force, the 

increase in ‘f’ leads to an increase in the pull-in 

voltage, and, this increase is lower in narrow beams. 

 

5.2. Effect of small scale 

 

Results of experiments carried out by different 

researchers demonstrate that in nanoscale, the 

mechanical properties of materials are size-

dependent. Therefore, this section is devoted to the 

effect of the small scale on the pull-in parameters in 

beam-type nano-switches. Figure6 shows the effect 

of the size parameter on nano-beam deformation in 

the two linear and nonlinear models. As illustrated, 

an increase in the size parameter leads to a decrease 

in beam deformation. In other words, the size 

parameter has a direct relationship with beam 

stiffness. Comparison of linear and nonlinear 

displacements in Fig. 6 reveals that in the nonlinear 

case, the beam has less displacement and stiffer 

behavior than in the linear case. 

 

 
Fig. 5. Comparison of nonlinear βPI for different 

values of g/b and ‘f’ with the assumption of n=3, 

e=0.2. 

 
Fig. 6. Nano-beam deformation for different values 

of ‘e’ for α4=0.3, g/b=β=0.5. 

 

Figure 7 displays the effect of the size parameter on 

the pull-in voltage in linear and nonlinear models. As 

illustrated, nonlinear displacements cause the nano-

beam to store more strain energy in itself and to have 

higher pull-in voltage. Besides, Fig. 7 shows that in 

both linear and nonlinear cases, an increase in the 
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small scale is accompanied by an increase in the 

pull-in voltage, and, an increase in the value of the 

van der Walls force leads to a decrease in the pull-in 

voltage. 

 

 
for  PIβEffect of size parameter on Fig. 7. 

differentvalues of ‘e’ with the assumption of g/b=0. 
 

 
Fig. 8. Comparison of nonlinear deformation of 

nano-beam under the influence of Casimir and van 

der Waals intermolecular forces for different values 

of ‘e’ with the assumption of α=0.3, β=g/b=0.5 and 

f=37.5. 

5.3. Effect of intermolecular forces 

 

As mentioned before, in the nanoscale, the two 

Casimir and van der Waals forces influence the 

nano-beam behavior. However, depending on the 

separation gap size, one of the two forces gains 

significant. Researchers usually consider the van der 

Waals force as the dominant force in distances below 

10 nm [38-40] and the Casimir force in distances 

above 20 nm. The attraction resulting from these 

forces causes the pull-in phenomenon to occur at a 

lower voltage.As can be seen in Fig. 8, when the van 

der Waals force is considered as the intermolecular 

force, the nano-beam undergoes a lower deformation 

than the case where the Casimir force is considered 

as the intermolecular force.The effect of 

intermolecular forces on βPI is very significant. 

Intermolecular forces decrease the pull-in voltage of 

the nano-switch, as shown in Fig. 9.  

It can be understood from this illustration that given 

the same amount of α3 and α4, the Casimir force 

decreases the pull-in voltage more than the van der 

Walls  force and has a greater effect than the van der 

Walls force. 

Figure 10 show the deformation at the nano-beam 

end ζTipas a function of the dimensionless voltage β 

for different values of intermolecular forces in linear 

and nonlinear cases. Two important points can be 

implied from this illustration. First, the nano-beam 

experiences greater displacement in the presence of 

the Casimir force than in the presence of the van der 

Waals force. In other words, the effect of the Casimir 

force is greater than that of the van der Waals force. 

Second, to consider the nonlinear effects in the 

equations causes the decrease of the highest nano-

beam deflection, compared to the linear case. 

 

5.4. The freestanding behavior 

 

Of the significant measures in the design of nano-

sensors and nano-switches is the investigation of 

their freestanding behavior. Given the fact that in the 

nanoscale, forces such as Casimir and van der Waals 

forces possess a magnitude comparable to the 

electrostatic force, there is the possibility that the 

nano-beam undergoes pull-in instability even in the 

absence of the electrostatic force. This takes place 

when either the gap between the fixed and the 

movable electrodes is narrow, or the nano-beam 

length is longer than a certain limit. Thus, the 

intermolecular force is high enough to cause the 

movable electrode to collapse on the fixed 

electrodes. This is known as the investigation of 

freestanding behavior in nano-switches which shows 
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in figure 11. By knowing the value of the 

intermolecular force causing this condition, one can 

determine the gap between the electrodes and the 

critical length of the nano-beam. 

 

 

 
Fig. 9. Effect of intermolecular forces on the pull-in 

voltage of the nano-beam for g/b=0.5 and f=37.5. 

 

 

5.5. Validation of results 

 
In order to verify the validity of the results of the 

present research, they are compared with those 

reported by other researchers in two sections. In the 

first section, the results obtained through the DQM 

are compared with those obtained by other 

researchers using other methods. In the second 

section, a comparison is made between the results of 

this study and experimental results. Given the fact 

that previous researchers have investigated the pull-

in and beam-type nano-switches usually through the 

classical model and linear model and without the use 

of the effects of intermolecular forces, here the 

results are compared in three consecutive, distinct 

tables.  

Table 1 displays the geometrical parameters used to 

analyze wide and narrow nano-beams. These 

parameters are used in the analysis of the following 

tables. 

 

 

 
Fig. 10. Effect of intermolecular forces on 

displacement at the nano-beam end in linear and 

nonlinear cases. 

 
Fig. 11.Values of αcr according to the size parameter 

for g/b=1 and different values of ‘f’. 

 

Table 1.Geometric parameter of nano-beam. 
Dimensions (µm) 

Case 
g h b L 

2.5 1 50 300 Wide beam 

2.5 1 0.5 300 
Narrow 

beam 
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Table2. Comparison of values of pull-in voltage βPI 

using different methods. 
PIβ 

Model 
Wide beam 

Narrow 

beam 

2.15 1.2 
DQM (present linear 

model) 

2.27 1.24 Numerical 

2.25 1.23 M-test[41] 

2.27 1.21 
Closed-form Model 

[42] 

2.16 1.21 HPM[23] 

2.31 1.27 MAD [6] 
 

Given the fact that in some of the studies mentioned 

in the references, the value of dimensionless 

deformation at the nano-beam end in the pull-in 

moment is presented, in Table 3, like in Table 2, the 

results for the values of ζPIare compared when the 

effects of the intermolecular forces and the size 

parameter are ignored and the linear model is used. 

As can be seen in Table 3, the results of the DQM 

have appropriate consistency with those of other 

methods. On the other hand, in the case of the 

nonlinear model, the nano-beam has a lower 

maximum deformation than in the case of the linear 

model, which is consistent with the results obtained 

in previous sections. 
 

Table 3. Comparison of values of dimensionless 

deformation at the nano-beam tip (ζPI) in different 

methods. 
PIζ 

Model 
g/b=1 g/b=0 

0.463 0.429 
DQM (present linear 

model) 

0.451 0.418 
DQM (present nonlinear 

model) 

0.478 0.436 DQM [43] 

0.369 0.333 LDL [22] 

0.478 0.436 Numerical 

 

Table 4. Comparison of values of pull-in voltage 

(βPI) with the presence of Casmir force. 

Nonlinear Linear 
Model 

e=0.2 e=0.1 e=0.2 e=0.1 

0.843 0.532 0.738 0.492 
DQM (present 

model) 

- - 0.742 0.497 DQM [43] 

- - 0.742 0.497 Numerical 

- - 0.637 0.452 LDL [22] 
 

In Table 4, the results obtained for the pull-in voltage 

(βPI) through the DQM in this paper are compared 

with the results obtained in the references in the 

presence of the Casimir force. As can be seen, the 

results of the DQM have appropriate consistency 

with the results of other methods with the presence 

of the Casmir force; and, applying the linear model 

enhances the prediction of the pull-in voltage. 

Finally, in order to evaluate the results of the DQM 

using the nonlocal theory as well as the linear model 

used in the present research, the results of this study 

are compared to the experimental results included in 

the references [41]. The geometrical properties of 

the nano-beam are displayed in Table 5 according to 

this reference.  
 

Table 5. Geometric parameter of nano-beam [41]. 

Dimentions(µm) Material 

g b h L  

1.05 50 2.94 250 
Silicon-110  

direction 

 

Figure12 compares the variations of the pull-in 

voltage with the experimental results according to 

the nano-beam length and based on the classical 

elasticity theory and the nonlocal theory. As is clear 

from the illustration, by assuming e=0.3037, the 

results of the nonlocal theory have the best 

consistency with the experimental results. It can be 

argued that by considering the nonlocal theory and 

size effects in the nano-switch, the gap between the 

classical theory and experimental results is filled, 

and this can prove the effectiveness of the use of 

non-classical theories in nanostructures.  
 

 
Fig. 12. Comparing the theoretical and experimental 

pull-in voltages for Silicon-110. 
 

6. Conclusions 
 

This paper investigated the static instability of a 

clamped-free nano-switch under the influence of 

electrostatic forces and intermolecular forces such as 

Casimir and van der Waals attractions based on 

Euler-Bernoulli’s model and the nonlocal elasticity 

theory by considering von-Karman-type nonlinear 

strain. The principle of minimum potential energy 

was used to derive the governing equations of 

motion of the system, and the governing equations 

derived through the DQM were solved so as to 

derive significant pull-in parameters such as the pull-
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in voltage and displacement of the beam tip, and to 

investigate the effect of intermolecular forces, 

geometrical dimensions, small effect, fringing field, 

and von-Karman-type nonlinear strain on the static 

instability behavior of nano-switches.  

The results demonstrate that the presence of 

intermolecular forces and fringing fields causes a 

reduction in the pull-in voltage, and, among the 

intermolecular forces in the nanoscale, the Casimir 

force plays a more significant role than the van der 

Waals force in reducing the pull-in voltage. In 

comparison with linear analysis, von-Karman-type 

nonlinear strain reduces the displacement of the 

beam tip and increase the pull-in voltage, 

particularly for higher (g/H) values. In other words, 

the nano-beam has stiffer behavior in the non-linear 

case than in the linear case. Finally, it can be argued 

that by taking into consideration the nonlocal theory 

or the size effect in the nano-switch, the gap between 

the classical theory and experimental results is filled. 

This can prove the effectiveness of the use of non-

classical theories in nanostructures.  

 

Appendix: the material length scale parameters 

in nonclassical continuum theory 
 

It is well-established that mechanical behaviors of 

micro/nanostructure are size dependent. 

Experiments reveal an increase in materials 

characteristics with decreasing the size at the ultra-

small scales. All these experiments imply that when 

the characteristic size (thickness, diameter, etc.) of a 

micro/nanoelement is in the order of its intrinsic the 

material length scales (typically sub-micron), the 

material elastic constants highly depend on the 

element dimensions.  

The source of difference between the mechanical 

properties of ultra-small and bulk materials with the 

same composition can be attributed to several 

physical phenomena such as differences in structure, 

deformation, or fracture mechanisms [44, 45]. The 

differences typically occur when the material 

dimensions reach characteristic length scales that are 

associated with defect dimensions such as 

dislocation, spacing and grain size [46]. At 

nanoscale level, the gradient deformations vary 

sharply, hence the microscopic stresses and strains 

are not constant and depend on the shrinking length 

scale of the nanostructures: the smaller the structure, 

the more rapid the microscopic fields vary, and they 

do so in a way that leads to either stiffening or 

softening of the material [47]. In order to model 

these gradient effects, higher-order continuum 

theories such as strain gradient theory, couple stress 

theory, surface elasticity [48,49]  and nonlocal 

theory [50,51] are introduced with length scale 

parameters. It should be noted that there is no 

comparative study on the properties of 

nanostructure based on classical, nonlocal, couple 

stress and strain gradient elasticity theories. But 

some study shows that the material properties 

predicted by the nonlocal elasticity theory are 

smaller than those by the classical elasticity theory 

and an opposite trend is observed for the predicted 

by the couple stress or strain-gradient theories. All 

theories converge to the classical elasticity theory as 

the nanostructure global dimension increases. 

The material length scale parameters also might be 

determined via molecular dynamic simulation or 

experiments. Previous researchers used atomistic 

simulations and molecular dynamics to determine 

the size effect parameters [52]. Maranganti and 

Sharma [52] used an atomistic approach to 

determine strain gradient elasticity constants of 

structures. They present mathematical derivations 

that relate the strain-gradient material constants to 

atomic displacement correlations in a molecular 

dynamics computational ensemble. The elastic 

constants are explicitly determined for some 

representative semiconductor, metallic, amorphous 

and polymeric materials. Moreover, these 

parameters can also be determined using mechanical 

tests [52]. As mentioned above, several methods 

such as atomistic approach and experimental used to 

determine the microscale parameters in nonclassical 

continuum theories. 
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