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Article info:  Abstract 
The purpose of this paper is to control simply supported flexible core 

sandwich beam's linear vibration equipped with piezoelectric patches under 

different loads. The effects of external forces imposed on the sandwich beam 

can be reached to a minimum value by designing an appropriate controller 

and control the beam's vibration. Three-layer sandwich beam theory is used 

for analytical modeling of sandwich beam vibration. Euler-Bernoulli beam 

theory and linear displacement field are used for the face-sheets and the soft 

core, respectively. The piezoelectric stress resultants are expressed in terms 

of Heaviside discontinuity functions. Governing equations of motion are 

obtained using Hamilton’s principle. The state space equations of the system 

are derived from governing equations of motion, by defining suitable state 

variables and using Galerkin’s method. The controller is designed using 

linear quadratic Gaussian (LQG) technique and Kalman filter is used to 

estimate the state of the system. The numerical results are compared with 

those available in the literature. The obtained results show that the controller 

can play a big role toward damping out the vibration of the sandwich beam. 

It also shows the difference between the vibration of top face sheets and 

bottom face sheets because of the flexibility of the core and the situations of 

sensor and actuator on the top or bottom face sheets have an important role 

on the dynamic response of sandwich beam. 
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1. Introduction 

 
In the recent years, use of smart structures 

consisting of composite and sandwich panel has 

been increased considerably due to high strength 

and rigidity. One of the most important reasons 

for using these structures is the possibility of 

taking advantages of piezoelectric layers. They 

are usually made of three parts; top and bottom 

face sheets, a foam or honeycomb core. Faces are 

generally made of high strength materials, 

whereas the core layer is made of a low specific 

weight material. So, the flexibility of the core is 

more than the face sheets [1]. The honeycomb 

cores are very flexible in all directions, 

compared with the face sheets. So, the in-plane 

stresses of the core can be neglected compared 

to face-sheets, whereas its transverse vibration 

must be considered.  

Generally, two approaches are largely used to 

analyze sandwich structures [2]: equivalent 

single layer (ESL) and layer wise (LW) theories. 
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In ESL theories, assuming the displacements in 

form of continuously differentiable function of 

thickness coordinate, the sandwich panel is 

analyzed as a2D equivalent single layer. In LW 

theories, such as three layered theories, a unique 

displacement field assumes for each layer in 

which the interface kinematic continuity 

conditions fulfills. Ganapathi and Makhecha [3] 

developed a nonlinear transient analysis of a 

thick sandwich plate with higher order theory. 

The geometric nonlinearity is introduced in the 

formulation based on the relevant Green’s strain 

vector for the laminate. The governing equations 

of motion obtained here are solved through 

eigenvalue solution for free vibration case 

integration technique is employed for the 

transient response analysis. Biglari and Jafari [2] 

studied a closed-form solution of static problems 

and free vibrations of a doubly curved sandwich 

shell with flexible core based on three-layered 

high-order sandwich panel theory. Mantari and 

Soares [4] studied generalized layer wise HSDT 

and finite element formulation for symmetric 

laminated and sandwich composite plates for the 

first time. 

The control of vibration is the important factor 

which shall be considered in designing a 

dynamic structure. With the new methods for 

decreasing vibration amplitude, active control is 

a reasonably applied method in which the 

reaction of the structure is accordance to the 

environmental excitation. In the active damped 

methods, the vibration of structures can be 

measured by sensors and after necessary 

examination by the controller, the messages will 

be sent to the actuators which at the end, results 

in depreciation of vibration.  

At the early time, serious attentions have been 

paid to the analysis of piezoelectric beams based 

on approximate theories. Abramovich and 

Pletner [5] presented the equations of motion of 

new adaptive sandwich structures with 

piezoelectric patches in a sufficiently accurate 

model and in a form readily for a solution either 

in closed-form or by approximate methods. Hwu 

et al. [6] formulated the forced vibration of 

composite sandwich beams with piezoelectric 

sensors and actuators. They used modal analyze 

for solving the problem.  An efficient new 

coupled zigzag theory is developed for dynamics 

of piezoelectric composite and sandwich beams 

with damping by Kapuria and Ahmed and Dumir 

[7]. Azrar et al. [8] analyzed active control of 

nonlinear vibration of sandwich piezoelectric 

beams. They used the Harmonic balanced 

method. Ramesh Kumar and Narayanan [9] 

considered the optimal placement of collocated 

piezoelectric actuator/sensor pairs on flexible 

beams using a model-based linear quadratic 

regulator (LQR) controller. A finite element 

method based on Euler–Bernoulli beam theory 

was used in their paper and they carried out the 

optimal location of actuator and sensor for 

different boundary condition. Dash and Singh 

[10] studied nonlinear free vibration of a 

piezoelectric laminated composite plate, 

numerically. They used Hamilton’s principle 

and finite element method for analysis and 

design. Azadi et al. [11] studied an adaptive 

inverse dynamics control which was applied to 

control and suppress the micro-vibrations of a 

flexible panel. The piezoelectric full layers were 

used as sensors and actuators at the top and 

bottom layer. Micro-vibrations, defined as the 

low amplitude vibrations at the frequencies up to 

1 kHz in their works. Chhabra et al. [12] 

considered the active vibration control of 

cantilever beam like structures with the 

laminated piezoelectric sensor and actuator 

layers bonded on top and bottom surfaces of the 

beam. A finite element model based on Euler-

Bernoulli beam theory has been developed and 

designing of state/output feedback control by 

Pole placement technique and LQR optimal 

control approach is demonstrated to achieve the 

desired control. They used third order zigzag 

approximation for the axial displacement. The 

electric field was approximated as piecewise 

linear for the sub-layers. Moutsopoulou et al. 

[13] simulated and modeled smart beams with 

Robust Control subjected to wind induced 

vibration. They used first-order shear 

deformation theory and Galerkin’s method and 

LQR method for vibration control. 

There are few reports about vibrations control of 

transversely flexible core sandwich beam, using 

three layered theories. In this paper, vibration 

control of transversely flexible core sandwich 

beams equipped with piezoelectric patches under 

different loads is carried out through three 
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layered theory. Euler-Bernoulli beam theory and 

linear displacement field are used for the face-

sheets and the soft core, receptively.The state 

space equations of the system are derived from 

governing equations of motion, by defining 

suitable state variables and using Galerkin’s 

method. The controller is designed using LQG 
technique and Kalman filter is used to estimate the 

state of the system. The numerical results are 

compared with those available in the literature. 

The obtained results show that the controller can 

play a big role toward damping out the vibration 

of the sandwich beam. It also shows the 

difference between the vibration of top face 

sheets and bottom face sheets because of the 

flexibility of the core. 

 

2. Theoretical formulation 

 

2.1. Equations of motion 

 
A simply supported sandwich beam with a 

rectangular cross-section in which, one pair of 

piezoelectric patches is embedded 

symmetrically at the top and the bottom surfaces 

of the beam, is shown in Fig. 1. The top and 

bottom patches act like an actuator and a sensor, 

respectively. Three-layer sandwich beam theory 

is used for analytical modeling of sandwich 

beam vibration. The Euler-Bernoulli beams 

theory is used for top and bottom faces modeling 

and linear polynomial displacement field theory 

is used for core layer. The face-sheets and core 

materials are assumed to behave in a linear 

elastic manner. The thickness of the core is much 

larger than the face sheets and a perfect bonding 

between the face sheets and the core is 

postulated. The beam has length L, width b and 

thicknesses dt for top face, c for core and db for 

bottom face. The piezoelectric has width b and 

thicknesses hS and hA for sensor and actuator, 

respectively. 

Displacement field of the face-sheets and the 

core are as follows [14]: 
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Using continuity condition between the face-

sheets and the core in all directions and the weak 

core theory, following relations are obtained: 
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(2) 
 

Constitutive equations of piezoelectric layers are 

as follows [15]: 
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Fig. 1 Simply supported sandwich beam with piezoelectric patch. 

 

where σ, Q, , E, and e are the stress, stress-

reduced stiffness, strain, electric field and 

piezoelectric moduli matrixes, respectively. It is 

assumed that electric field is only in the z 

direction and it is constant along it [15]: 
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whereV(t) is the voltage difference of the 

actuator piezoelectric patch surfaces. The stress 

fields of sandwich layers and piezoelectric 

sensor are only due to mechanical loading. 

Whereas, the stresses of actuator consist of two 

parts [10]: (a) mechanical components, (b) 

electrical components. So, the stress fields of 

sandwich layers, sensor and actuator are as 

follows: 
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Equations of motion are derived according to 

Hamilton’s principle: 
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whereT, U, and V are kinetic energy, strain 

energy and external work done by the external 

forces, respectively. The strain energies of face 

sheets, core and piezoelectric due to bending are 

[16]: 
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In the last equations, H(x) is the unit step 

function. The kinetic energies of the sandwich 

beam and piezoelectric layers due to bending are 

[17]: 
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It is assumed that the transverse external force is 

applied only to the top layer of the sandwich 

beam in the z direction. So, the potential energy 

due to the external work is [2, 16]: 
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Now, by substitution the Eqs. (7-9) to the 

Hamilton principle and using constitutive 

relations Eq. (3), the equations of motions are 

derived as: 
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In the above relations, the stress resultants are: 
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The constant and inertia terms are as follows: 
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By substituting Eqs. (11 and 12) in Eqs. (10), the 

governing equations of motion based on 

displacement are achieved. 

 

2.2. Solution procedure 

 

In this section, Galerkin’s method is used to 

discretize the set of partial differential equations 

of the beam. For most structural systems under 

practical loading conditions, the forced vibration 

response is mainly due to a contribution from the 

first few natural modes. In this section, mode 

superposition method is adopted to obtain an 

approximate reduced-order dynamic model of 

the system in the time domain. The mode shapes 

of the simply supported sandwich beam are as 

follows: 
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(13) 
 

where 𝑈𝑚
𝑡 (𝑡), 𝑊𝑚

𝑡 (𝑡), 𝑈𝑚
𝑏 (𝑡) 𝑎𝑛𝑑 𝑊𝑚

𝑏(𝑡) are 

generalized coordinates and 

cos(𝛼𝑚𝑥) , sin(𝛼𝑚𝑥) is the comparison 

function. By substituting Eq. (13) in Eq. (10) and 

multiplying the relations (10.a) and (10.c) by 

function cos(mx) and relations (10.b) and (10.d) 

by function sin(mx), integrating over the length 

of the beam, and using the modes orthogonally 

principle, we obtain Eq. (14) in time domain: 
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(14) 
 

where M and K are the generalized mass and 

stiffness matrices, V is voltage, F is external 

load, Ff is the vector external load coefficient 

and Fv the generalized control force vector 

produced by electromechanical coupling effects. 

Eq. (14) can be expressed in state space form as: 
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(15) 
 

where, A is system matrix, Bv is control matrix, 

Bf is disturbance matrix, F(t) is the disturbance 

input and V(t) is is the control input to the 

actuator. The matrixes A, Bf and Bv are as 

follows: 
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 (16) 
 

For controlling purposes, the output of system is 

the vibration (displacement) of beam at xc 

(middle of the beam): 
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2.3. Control law 

 

Linear quadratic regulator (LQR) is an optimal 

control procedure, in which energy-like criteria 

are used and the minimization procedure 

automatically produces controllers that are stable 

and somewhat robust. The key idea is to design 

an optimal control to minimize a cost function or 

a performance index which is a quadratic 

function of the desired system response and 

required control force [18]: 

 

0

( )T TJ dt


  X QX V RV  
(18) 

 

where Q and R are semi-positive-definite and 

positive definite weighting matrices on the 

outputs and control inputs, respectively. 

Assuming full state feedback, the control law is 

given by: 
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By substituting eq. (19) in eq. (15): 
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(20) 
 

According to eq. (19), measuring all state 

variables is not possible. But, it is necessary to 

measure system output, which is the sensor 

output voltage. So, the system may be used to 

estimate of the state vector. Kalman filter is used 

to estimate the state of the system. Sensor layer 

output voltage is considered as system output y. 

Using relations introduced in section 4 of 

reference [15], it can be easily shown that 

y=Csensorx, where parameter x is the state vector. 

Based on this assumption, Kalman filter 

formulation is as follow [18]: 
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(21) 
 

where Le is the Kalman gain. By using LQR and 

Kalman filter, simultaneously, LQG method is 

obtained as follow: 
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(22) 

 

3. Results and discussion 

 

In order to examine the accuracy of the present 

structural formulation, the response of a 

sandwich beam with flexible core and simply 

supported boundary condition to step load 

obtained from the proposed method are 

compared with those available in the literature 

[14]. After validating the presented model, to 

assess the performance of the piezoelectric 

patches in controlling the responses of sandwich 

beams under different load, extensive numerical 

results are presented. 

 

3.1. Comparative study 

 

First, the response of sandwich beam to dynamic 

step load (0.5 kN/m) obtained from the 

presentmethod are compared with those reported 

by Hamed and Rabinovitch [14] for sandwich 

beams with a flexible core. The 

materialproperties are presented in Table 1. 

In Fig. 2, the nondimensional transverse 

vibration (wdynmic/wstatic) of the middle point of 

bottom face sheet is illustrated. It can be seen 

from Fig. 2 that the present solution matches 

very well with the results obtained by Hamed 

and Rabinovitch [14]. Thus, the correctness of 

the present formulations is demonstrated. 

 

3.2. New result 

 

In this section, new results for vibration control 

of smart sandwich beam with flexible core and 

simply supported boundary conditions are 

https://en.wikipedia.org/wiki/Linear-quadratic_regulator
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presented. A sandwich beam equipped with one 

actuator and one sensor was bonded 

symmetrically on the surfaces of the sandwich 

beam. The geometry and mechanical properties 

are presented in Table 1. The piezoelectric 

patches are PZT-5H [19]. 

In the following, comparison of controlled and 

uncontrolled vibration of the beam and the 

effects of the transverse elastic module and shear 

module of the core and length and position of the 

piezoelectric patches on the controlled vibration 

of the sandwich beam are investigated.  

Figures 3 and 4 show comparison of controlled 

and uncontrolled transverse vibration of the 

beam under dynamic loads. Figure 3 shows the 

impulse loaded response of system based on the 

first four mode shapes of Galerkin’s method. 

The point impulse force (-20 kN in 0.1 mili 

second) is applied at l/4 in the z direction, 

vibration measured at l/2 of sandwich beam’s 

length, the position of patches are at x1=l/5, 

x2=2l/5 and controller parameters are Q=I (unit 

matrix), R=10-4. 

Figure 4 shows the uniform step loaded response 

of system based on the first four mode shapes of 

Galerkin’s method. The uniform step force (800 

N/m) is applied at the full length of the beam, 

vibration measured at l/2 of sandwich beam’s 

length, the position of the patch are at x1=l/5, 

x2=2l/5 and controller parameters areQ=I (unit 

matrix), R=10-5. 

According to the figures, results show that the 

amplitudes of displacement vibration decay in 

time toward zero with a controller, in both 

impulse point and uniform step loads. It is also 

shown that the transverse deflections of the 

upper and lower face sheets are almost identical 

through the entire time domain. But, axial 

vibrations of the top and bottom face sheets are 

not identical. It will be shown that the core with 

transverse elastic and shear modules mentioned 

in Table 1, has rigid flexural and flexible 

shearing behavior in vibration. 

 

Table 1. Material properties [14] 
 E,G ρ L h b e31 

 GPa kgm-3 mm mm mm cm-2 

Top 18 2000 1200 6 100 - 

Core 0.056,0.022 60 1200 60 100 - 

Bottom 18 2000 1200 6 100 - 

Actuator 60 7500 240 0.5 100 -16.604 

Sensor 60 7500 240 0.0028 100 -16.604 

 

 
Fig. 2 The comparison of the present solutions with those from literature [14] 
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Fig. 3. Controlled and uncontrolled response of top and bottom face-sheets under point impulse load;  (a) top 

axial, (b) top transverse, (c) bottom axial, and (d) bottom transverse displacements 
 

 

  

  
Fig. 4. Controlled and uncontrolled response of top and bottom face-sheets under uniform step load;  (a) top 

axial, (b) top transverse, (c) bottom axial, and (d) bottom transverse displacements 
 

(a) (b) 

(c) (d) 

(a) (b) 
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The flexibility of the core conduces the 

difference between top and bottom face sheets 

displacements. This effect is associated with a 

change in the transverse elastic and shear 

modules of the core. For better consideration, 

effects of the transverse elastic and shear 

modules of the core on the force vibration of 

axial and transverse displacements of the top and 

bottom face sheets are considered in Figs. 5 and 

6, separately. 

In Fig. 5, the shear modulus is constant, but the 

elastic modulus of the core decreases 

(Ec=56×103 Pa, Gc=22×106 Pa). Conversely, in 

Fig. 6, the transverse elastic modulus is constant 

and the shear modulus of the core decreases 

(Ec=56×106 Pa, Gc=20×106 Pa). 

The results of Fig. 5 show that the transverse 

displacement of top face in the z direction is 

larger than deflection of bottom face sheet, 

because of the flexural flexibility of the core. It 

is interesting that the results of Fig. 6 show the 

same deflections for both top and bottom face 

sheets deflection. As shown in Fig. 6, the axial 

displacement of the top face is much bigger than 

the axial displacement of bottom face sheet, 

because of the shearing flexibility of the core. 

The competence of proposed smart sandwich 

beam for damping of force vibration is 

demonstrated in Figs. 7 and 8. Figure 7 shows 

the damping ratio for top face sheet deflection 

(Wt) in order to show the effect of patch length 

on the vibration controlling (damping). The 

damping ratio of the vibration amplitude is 

calculated as follow: 

1

1

1
ln

2 n

A

n A


 

 
  

 
 

(23) 
 

whereA1 and An+1 are the amplitudes of the first 

and n+1 cycle, respectively.  
 

  
Fig. 5. Effect of elastic modulus of core on the controlled response of top and bottom face-sheets under uniform 

step load (Ec=56×103Pa, Gc=22×106Pa); (a) axial, and (b) transverse displacements. 
 
 

  
Fig. 6. Effect of shear modulus of core on the controlled response of top and bottom face-sheets under uniform 

step load (Ec=56×106Pa, Gc=20×106Pa); (a) axial, and (b) transverse displacements. 
 

(a) (b) 

(a) (b) 
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In Fig. 7, the piezoelectric patch is located at 
x1=l/5 and has various lengths of l/20, l/10, and 
l/5. The sandwich beam is under impulse point 
load (-20 kN in z direction at the middle of the 
beam) and vibration is measured at l/4. It is seen 
from the figure that longer patches have greater 
damping ratio. 
Figure 8 shows the effect of patch locations on 
the damping ratio. The length of the patch is 
constant (l/5) andits position locates at x1=0, l/5, 
and 2l/5. It is obvious that for symmetric 
boundary conditions of the beam, patches 
located at the same position of the beginning and 
end of the beam have same effects on 
controlling. As seen from the figure, the patch 
located at the middle of the beam has greater 
damping ratio.In addition, it is seen in Figs. 7 and 
8 that increasing control weighted factor (R) 
decreases the damping ratio. 

4. Conclusions 
 
The present study is concerned with active 
control of dynamic response of smart sandwich 
beams with flexible core subjected to different 
loads (like impulse and uniform step loads) using 
piezoelectric sensor/actuator patches. Euler-
Bernoulli beam theory is used for face-sheets 
and linear polynomial displacement field theory 
is used for the core. Governing equations and 
solution procedure of vibration are obtained 
using Hamilton’s principle and Galerkin’s 
method. Linear Quadratic Regulator feedback 
control law is applied in a closed loop system to 
provide active vibration control of the sandwich 
beam.  
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Effect of patch length for impulse point load on (a) deflection vibration Wt and (b) damping ratio. 
 

 
Fig. 8. Effect of patch location for impulse point load on (a) deflection vibration Wt and (b) damping ratio. 
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A set of the parametric study is carried out to 

show the effect of core flexibility, control 

weighted matrix, piezoelectric patch location 

and length of the dynamic response of sandwich 

beam. The obtained results reveal that the active 

vibration control strategy can play a big role 

toward damping out the vibration of the 

sandwich beam exposed to different loadings. 

The flexibility of the core conduces the 

difference between the top and bottom face 

sheets displacements that must be accounted in 

the design of the controller. This effect is 

associated with a change in the elastic modulus 

and shear modulus of the core. The decreasing of 

transverse elastic module causes decreasing of 

the flexural flexibility of sandwich beam and 

increasing of the difference between the top and 

bottom deflection vibration. Decreasing the 

shear module causes the shearing flexibility of 

sandwich beam to decrease, and the difference 

between the top and bottom axial displacement 

vibration to increase. 
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