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Article info: Abstract 
In today's design, system complexity and increasing demand for safer, more 
efficient and less costly systems have created new challenges in science and 
engineering. Locomotives are products which are designed according to market 
order and technical needs of customers. Accordingly, targets of companies, 
especially designers and manufacturers of locomotives, have always been on the 
path of progress and seek to offer products with higher technology than other 
competitors. Quality of body structures is based on indicators such as natural 
frequency, displacement, fatigue life and maximum stress. Natural frequency of 
various components of the system and their adaption to each other are important 
for avoiding the phenomenon of resonance. In this study, body structures of ER24 
locomotive (Iran Safir Locomotive) was studied. A combination of imperialist 
competitive algorithm (ICA) and artificial neural network was proposed to find 
optimal weight of structures while natural frequencies were in the determined 
range. Optimization of locomotive's structure was performed with an emphasis on 
maintaining locomotive abilities in static and dynamic fields. The results indicated 
that use of optimization techniques in the design process was a powerful and 
effective tool for identifying and improving main dynamic characteristics of 
structures and also optimizing performance in stress, noise and vibration fields. 
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1. Introduction

Since cities are growing and people are 
becoming more busy, transport systems need 
to be improved. Vehicle manufacturers are 
making investment to raise travelling speed, 
increase passenger capacity of vehicles and 
provide better passenger comfort. Using 

advanced lightweight structures for vehicle 
design, structural dynamics in connection with  
vehicle running dynamics is becoming 
increasingly important [1]. 
In the field of vehicle development, 
competition-driven objectives, like shortening 
time to market, creating innovative designs and 
decreasing vehicle costs are forcing vehicle 
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engineers to use new development methods. 
Virtual prototyping computer tools have made 
considerable progress in recent years. 
Moreover, this process has been used widely 
for modelling and simulating dynamic motion 
of complex vehicle systems. Working with 
virtual prototyping technology has shown the 
potential for improving the product 
development process [2]. 
Unwanted vibrations are detrimental to the 
performance of dynamical systems. In addition 
to causing trouble for proper functioning of the 
system, reducing life of the structure is its 
fault. Vibrations in the vehicles with internal 
combustion engines have great importance 
similar to locomotives, which must be also 
considered. On the other hand, this factor is 
very important because working conditions are 
different from the defined standards of design 
and production. 
In the past, designing was based on experience 
and expensive laboratory tests. Analytical 
methods were sometime impossible or very 
difficult. However, demand for new designs 
along with considering aspects such as lighter 
weight, less fuel consumption, safer and 
economic aspects, recyclability and availability 
of parts has not been not reduced. Therefore, 
various studies have been done in this context, 
the most important of which on modal analysis 
and optimization methods of locomotives  can 
be mentioned as follows: static and dynamic 
analyses were performed on the G16 
locomotive chassis for its optimization By 
Kymasy and partovi [3]. Important 
connections of locomotive chassis were found 
and changed in order to increase structural 
stiffness and several other suggestions for 
improving natural frequency.  
Subik and hey [4] used modeling and 
simulation for improving stability, accident 
and rolling resistance of the vehicle structure. 
Modal analysis techniques were used for this 
purpose. The results of simulation and modal 
testing indicated the relationship between both 
methods. After verifying the results, cross-
section was also changed. The results showed 
an increase in natural frequency and 
improvement of dynamic properties. 
 

2. Modal analysis 
 
Vibration and acoustical behaviors of a 
mechanical structure are determined by its 
dynamic characteristics. This dynamic 
behavior is typically described using a linear 
system model. The system inputs are forces 
(loads) and its outputs are the resulting 
displacements or accelerations. The system 
poles usually occur in complex conjugate 
pairs, corresponding to structural vibration 
modes. 
The poles' imaginary part is related to the 
resonance frequency and real part to damping. 
Structural damping is typically very low (a few 
percent of critical damping). The system'ss 
eigenvectors, expressed on the basis of 
structural coordinates, correspond to 
characteristic vibration patterns or “mode 
shapes”. System identification from input-
output measurements yields the modal model 
parameters. This approach is now a standard 
part of mechanical product engineering 
process. 
Free motion of a mechanical structure is 
governed by a partial differential equation. By 
applying discretization techniques, such as 
finite-element method, vibration behavior can 
be expressed as in Eq. (1). 
         0 xKxCxM                    (1) 

where {ݔ} ϵ R is a vector of generalized 
displacements and M, C and K are mass, 
damping and stiffness matrices, respectively. 
The linear mechanical systems considered here 
are such that M is symmetric and positive 
definite while K is symmetric and positive 
semidefinite. Solution of these equations leads 
to an eigenvalue problem that is solved in 
terms of the modal paramters [5]. 
Specific to the mechanical problem is the 
straightforward physical interpretation that can 
be given to the system's eigenvalues and 
eigenvectors. System poles in structural 
dynamics usually occur in complex conjugate 
pairs, each of which corresponding to a 
structural mode. The poles' imaginary part is 
related to the resonance frequency and the real 
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part is connected to the damping. Structural 
damping is typically very low (a few percent 
of the critical damping); hence, this damping is 
usually expressed as a ratio with respect to 
critical damping. 
Modal representation of a mechanical structure 
can be analytically determined if a lumped 
mass-spring system is concerned. In the 
general case of a continuous structure, 
numerical approximation is made by means of 
finite element model (FEM), discretizing the 
structure in a finite number of physical 
coordinates. 
This research was done using computer 
software of Hyper mesh, MD Nastran and 
Matlab. The numerical results were compared 
with the experimental (MAPNA) ones. The 
advanced finite element model was used in 
modal analysis, which caused significant 
increase in analysis time. Mass normalization 
method was used to obtain eigenvalues and 
natural frequencies. An advanced finite 
element model consisting of plates with 
different thicknesses was used as well. The 
body structure was modelled in as much detail 
as possible. In this case, the model was similar 
to real structures and there was no 
simplification. 
Frequency of 0 to 30 Hz was studied in the 
modal analysis. Up to the frequency of 30 Hz, 
three different elastic (structural) mode shapes 
existed. The mode shape with the lowest 
frequency showed a torsion of the car body 
structure. At higher frequencies, lateral, 
vertical bending and local mode shapes of the 
car body existed. The locomotive and finite 
element model of body structure with sheet 
thickness are given in the figures 1 and 2 and 
Table 1. 
 

 

Fig. 1. ER 24 locomotives. 

 

 
Fig. 2. Body structure's finite element model (b). 

Table 1. Sheet thickness (body structures).

 

Boundary conditions were free-free. 
Depending on the boundary condition, the first 
six natural frequencies were equal to zero. The 
first non-zero natural frequency was the 
seventh mode. Natural frequencies and mode 
shapes can be used to measure compliance [6]. 
Natural frequencies and mode shapes obtained 
from finite element analysis and modal testing 
are shown in Table 2 and Fig. 3. 
 

Table 2. Natural frequency and the mode shape. 
 

mode 
 

Mode shape 
 

߱௣ (Hz) 
 

߱௙  (Hz) 
 

 ߂%
 

#7 
 

1st torsion 
 

7.8 
 

7.87 
 

% 0.89 
 

#8 
 

1st lateral 
 

19.2 
 

19.43 
 

% 1.1 
 

#9 
 

1st bending 
 

24.9 
 

25.53 
 

% 2.53 

 
௙߱ୀ Natural frequency (finite element model) 

߱௣ୀ Natural frequency (experimental modal analyses)  

߂% = Difference between natural frequencies 

(percent)   

           

߂%   = ฬ
 ݂߱−݌߱
݌߱

ฬ ∗ 100 
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(a) 

 

 
 (b) 

 

 
(c) 

Fig. 3. First torsional (a) lateral (b) and bending (c) 
mode. 

Acceptable error between results of the finite 
element analysis and experimental analyses 
was assumed as three percent. The 
optimization process began after ensuring 
accuracy of the finite element model. 
Optimization process required an objective 
function for its optimization. In order to 
optimize the objective function, optimization 
algorithm acquired values in each of the 
iterations. Since the request objective function 
value and its constraints by the finite element 
model led to wasting time, in order to speed up 
data retrieval, artificial neural network was 
used as a substitute to finite element model. 
 
3. Artificial neural network 
 
The current interest in artificial neural 
networks is largely a result of their ability to 

mimic natural intelligence [7]. Artificial neural 
networks are composed of a set of artificial 
neurons, a simple model of a biological 
neuron, which is arranged on a set of layers. 
One of the most important characteristics of 
neural networks is learning. Artificial neural 
networks have two operation modes: training 
mode and normal mode. 
In the training mode, adjustable parameters of 
networks are modified. In the normal mode, 
the trained networks are applied for simulating 
the outputs [8]. 
Locomotive body structure was composed of 
13 different thickness levels; 8 effective 
thickness of body structure were considered 
design variables. Artificial neural network was 
designed with eight neurons in the input layer 
(thickness of each sheet) and 4 neurons in the 
output layer (3 first non-zero natural frequency 
and body structures mass). Using finite 
element software, 145 data were generated that 
include sheet thickness, natural frequency and 
body structures mass.  
80 % of the data was considered for network 
training and the remaining data were used to 
test the trained network. As seen from the 
trained neural network, estimates of natural 
frequency and mass of the body structure had 
acceptable error. 
Average error of neural networks was 2.23% 
and network estimates of mass and natural 
frequencies had precision of about 97%. 
Output of the trained neural network and finite 
element model for the test data is given in 
Fig. 4. 
 

 
 
Fig. 4. Output of artificial neural network (ANN) 
and finite element model for data testing. 
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Mass of body structure as an objective function 
was considered for minimizing. Natural 
frequency could be used as equality 
constraints. The optimization problem for 
minimizing mass of the body structure was 
done by changing the sheet thickness of the 
body structure by preserving natural 
frequencies. Neural network predicted natural 
frequencies and mass. 
Knowing the neural network weights and 
activation function neurons, output of the 
neural network could be expressed based on its 
input by an explicit mathematical relationship. 
The activation function of network's neurons 
was sigmoid (logsig) and the trained neural 
network had two layers. So, output of the 
trained neural network could be defined using 
mathematical relationships, as shown in 
Eq. (2). 

 ])1[]][([

]2[][(
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                             (2) 

There are many algorithms for solving 
unconstrained optimization problems. Also, 
there are several ways for converting the 
constrained optimization problem into 
unconstrained optimization problem, the most 
common of which is penalty function method. 
A constrained optimization problem can be 
expressed as Eq. (3), where h(x) is equality 
constraint and g(x) is inequality constraint [9]. 

   (3)   
 

  
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ij
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Objective function of optimization problems is 
a criterion for comparing different designs and 
choosing the best plan. Minimizing the 
objective function should not adversely affect 
behavior and performance of the optimization 
problem and conversion of constrained 
optimization problem into unconstrained 

optimization problem. The exterior penalty 
function is defined in Eq. (4). 
 

      xprxfrx  :),(min                  (4)  

            



m

j
j

n

i
i xhxgxp

1

2

1

2,0max

Φ(x, r) is secondary objective function or 
artificial objective function, f(x) is main 
objective function and r is penalty function 
coefficient. Penalty function coefficient is 
usually constant and has a large value. Using a 
constant and large value for the penalty 
function coefficient makes it easier to study in 
the search space. 
 
4. Optimization 
 
An optimum designed structure is selected by 
considering the variables such as cost or 
weight of the structure after all the design 
constraints are satisfied. Determining optimum 
design is performed by considering and 
minimizing cost or weight function of the 
structures as objective functions. Choosing the 
design variables from a set of available values, 
various numerical optimization methods can be 
selected to evaluate optimal solution of 
optimization problems. In the present paper, 
imperialist competitive algorithm (ICA) was 
used to solve the optimization problems. 
Optimization can be easily described as 
finding an argument x, the relevant cost of 
which f (x) is and it has been extensively used 
in many different situations such as industrial 
planning, resource allocation, scheduling and 
pattern recognition.  
ICA is an algorithm which was introduced for 
the first time by Atashpaz-Gargari and Lucas 
in 2007 [10] and, inspired by imperialistic 
competition, was used for optimizing. This 
method has considerable relevance to several 
engineering applications [11]. 
Like other evolutionary ones, the proposed 
algorithm starts with an initial population. 
Population individuals called country are in 
two types: colonies and imperialists, all of 
which together form some empires. 
Imperialistic competition among these empires 
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forms the basis of the proposed evolutionary 
algorithm. During this competition, weak 
empires collapse and powerful ones take 
possession of their colonies. Imperialistic 
competition hopefully converges to a state, in 
which only one empire exists and its colonies 
are in the same position and have the same cost 
as the imperialist.  
The goal of optimization algorithms is to find 
an optimal solution in terms of the problem 
variables (optimization variables). Therefore, 
an array of variable values that must be 
optimized is formed.  
 

 

Fig. 5. Illustration of imperialist of competitive 
algorithm. 

In genetic algorithm terminology, this array is 
called ‘‘chromosome’’; but, in this paper, the 
term ‘‘country’’ was used for this array. The 
working principle of ICA is shown in Fig. 5. 

5. ICA result 
 

Optimization process began with 50 countries 
which were randomly distributed in the search 
types. The maximum number of iterations was 
100 iterations. 
 If the distance between two iteration 
improvements in the objective function was 
less than a certain value (0.01), optimization 
process would be stopped and the best answer 
of the last iteration was the optimal answer. In 
addition to this stop condition, if no 
improvement was found in the objective 
function after 5 iterations, optimization process 
would be stopped. In order to achieve higher 
efficiency of the algorithm, several stopping 
criteria were used. Optimizing the objective 

function per number of iteration is shown in 
Fig. 6. 

 

 
Fig. 6. The best answers in each iteration of ICA. 

 
 

Optimization process was performed by the 
algorithm in 26 iterations and, after this 
iteration, better results were not obtained. 
After ending the optimization process, 
thickness of the optimal sheets offered by the 
algorithm was applied to the finite element 
model. The purpose of the best cost in Fig. 6 
was mass and error of natural frequency. As a 
result, the lower this quantity (best cost), the 
less the mass of locomotive body structure 
would be. Weight of body structures in 
original state was 14600 kg and it was 13890.1 
kg in optimized state. The results in Table 3 
indicate a 4.8% decrease in the body structure 
weight. 
 
Table 3. Mass and natural frequency (original and 
optimized models). 

  

Weight 
 

torsion 
 

lateral 
 

bending 
 

Original 
 

14600 kg 
 

7.87 
 

19.43 
 

25.53 
 

Optimized 
 

13890.1 kg 
 

7.88 
 

19.42 
 

25.54 

 
 

Since natural frequencies are intrinsic 
properties of mechanical systems, therefore, 
based on the vibrations theory, it is found that 
the peaks in the frequency response function 
graph are natural frequencies. To view changes 
of natural frequencies, the frequency response 
function (FRF) was used. Frequency response 
function graph for the basic and optimized 
models presented by the ICA is given in Fig. 7 
[5].  
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Fig. 7. FRF of the original and optimized models 
proposed by the ICA. 
 
 
In order to evaluate efficiency of competitive 
colonial algorithms, the optimization problem 
was optimized by another optimization 
algorithm. For this purpose, genetic algorithms 
(GA) were used. 
Optimization process by genetic algorithm 
began with 20 chromosomes which were 
randomly distributed in the search space. 
Crossover rate was 0.8, mutation rate was 
equal to 0.01, migration rate was equal to 0.2 
and, in each update of initial generation, ten 
percent (two chromosomes) of the previous 
generations (best members of its generation) 
was directly transferred to the next generation 
(elitism count) [12]. 
The maximum number of iterations was 100 
iterations and, if the distance between two 
iterations, improvement in the objective 
function, was less than a certain value (0.01), 
optimization process would be abandoned. 
 In addition to this stop condition, if no 
improvement occurred in the objective 
function after 5 iterations, the optimization 
process would be abandoned. Optimizing the 
objective function per number of iteration is 
shown in Fig. 8 and FRF graph for the basic 
and optimized models by genetic algorithm is 
given in Fig. 9. 
By comparing results of the optimization 
algorithms, it was seen that mass of the body 
structure was reduced and the natural 
frequencies were satisfied by both algorithms. 
Genetic algorithm with lower complexity and 
simpler mechanism of competition in each 
iteration needed more iteration to achieve the 
optimal solution while imperialist competitive 

algorithm with two types of competition 
(competition among colonies in each empire 
and competition between empires) converged 
to the optimal point with higher speed and less 
iteration. 

 

 
Fig. 8. The best answers in each iteration of GA. 

 
 

 
Fig. 9. FRF of the original and optimized models 
proposed by the GA [12]. 
 
6. Conclusions 
 
The purpose of this research was to find 
economical and effective ways for improving 
efficiency through reducing body structure 
weight and maintaining body structure's 
natural frequency. 
Neural networks could be used as a tool for 
fast and accurate identification of finite 
element models and artificial neural networks 
could be quickly trained using finite element 
software. For the optimization, two kinds of 
optimization algorithms were used, which 
were inspired by nature or natural events. 
Optimization process was performed by the 
imperialist competitive algorithm in 26 
iterations whereas genetic algorithm obtained 
the same result as colonial competitive 
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algorithm with more iteration. Less iteration 
was equal to less cost and computation time, 
which was important for huge search space 
optimization. The results presented by this 
algorithm showed that the algorithm was 
successful in achieving the targets. 
The imperialist competitive algorithm is a new 
method, which has great abilities to cope with 
different types of optimization problems. 
However, it is still in its infancy and intensive 
studies are needed to improve its performance. 
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