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Article info:  Abstract 
A numerical study of hemodynamic parameters of pulsatile blood flow is 
presented in a stenotic artery with non-Newtonian models using ADINA. Blood 
flow was considered laminar, and the arterial wall was considered rigid. Studied 
stenosis severities were 30, 50, and 70% of the cross-sectional area of the 
artery. Six non-Newtonian models were used to model the non-Newtonian 
behavior of blood, and their results were compared with the Newtonian model. 
The results showed that in Power-law and Walburn-Schneck models, unlike 
other models, shear stress values before and after the stenosis were smaller than 
Newtonian models. Also, in maximum flow rate, the Carreua, generalized 
Power-law, Casson, and Carreua-Yasuda models showed a reduction in global 
importance factor of non-Newtonian behavior, and subsequently, the results 
approached Newtonian model. In minimum flow rate, the global importance 
factor of Newtonian behavior increased, which highlighted the importance of 
Newtonian model. In minimum flow rate, Carreua-Yasuda model was more 
sensitive to the non-Newtonian behavior of blood compared to Carreua, Casson, 
and Power-law models. Also, in that time period, Walburn-Schneck was less 
sensitive to the non-Newtonian behavior of blood. On the other hand, this model 
did not show sensitivity when the flow rate was at its peak. Power-law model 
overestimated the global importance factor values. Therefore, Power-law model 
was not suitable, because it showed extreme sensitivity to dimension. Walburn-
Schneck model was not suitable too because it lacked sensitivity. 
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1. Introduction  
 
Blood is a heterogeneous multiphase mixture of 
solid blood cells (red blood cells, white blood 
cells, and platelets) in the fluid plasma, which has 
several non-Newtonian rheological properties 

such as the dependence of the deformation rate, 
viscoelasticity, and yield stress [1]. Blood 
viscosity depends on various factors such as the 
viscosity of plasma, hematocrit percentage, and 
distribution and mechanical properties of blood 
cells [2-4]. Non-Newtonian properties of blood 
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affect the stress on artery walls, which can 
facilitate the onset and progression of lesions such 
as deposits inside the artery walls [5]. No model, 
whether Newtonian and non-Newtonian, can 
cover all complex properties of blood. Therefore, 
several different models are being used. These 
models have differences and can yield different 
results [6-8]. The capability of non-Newtonian 
models is different in covering physical 
phenomenon. 
Different hypotheses have been proposed for the 
relationship between hemodynamic parameters 
and the emergence and development of the 
disease, which focus primarily on wall shear stress 
values [9]. Several numerical studies have also 
been conducted in this area. For example, 
Ishikawa et al. [10] numerically investigated the 
effect of non-Newtonian pulsatile blood flow 
through a stenotic vessel. They assumed a 
compressible and laminar flow. They investigated 
wall shear stress, flow pattern, the separation 
region, and pressure distribution, and stated that 
non-Newtonian properties of blood reduce the 
power of the vortex which develops downstream 
of the stenosis.  
Mallik et al. [11] used the Power-law model to 
analytically solve the blood flow through a vessel. 
They investigated the parameters such as fluid 
velocity, volumetric flow rate, wall shear stress, 
and effective viscosity. Jung et al. [12] studied the 
non-Newtonian blood flow in a stenotic artery, 
and compared the results with an experimental 
study and obtained acceptable results. The effect 
of stenosis severity and wall shear stress was also 
examined. Sapna [13] analytically solved the non-
Newtonian blood flow in a stenotic artery. Wall 
shear stress and apparent viscosity were 
investigated. It was found that increase in stenosis 
severity increases the apparent viscosity and wall 
shear stress, but due to the non-Newtonian 
properties of blood, this increase is not significant. 
Amornsamankul et al. [14] studied the non-
Newtonian behavior of blood in a stenotic artery 
with a porous wall and investigated the 
significance of the assumption of non-Newtonian 
blood. The stenosis severity was 50% asymmetric 
and symmetric. They used Carreua model which 
is non-Newtonian. Pressure drop, axial velocity, 
and wall shear stress were investigated.  
It is widely accepted that at shear rates higher than 

100 s-1, blood behaves as a Newtonian fluid [9, 
15]. Although a study by Johnson et al. [16] 
showed that at low velocities of blood flow, non-
Newtonian effects become important. Since there 
are periods during the cardiac cycle in which the 
flow is slow, it is reasonable that non-Newtonian 
effects of blood flow during this period become 
important. It is therefore essential to know the 
extent to which the non-Newtonian effects 
become important in the cardiac cycle. The 
purpose of this study was to investigate the effect 
of stenosis percentage on wall shear stress of an 
artery, global importance of non-Newtonian 
effects, pressure drop, and velocity profile using 
six non-Newtonian models. 
 
2. Present work and numerical methods 
 
The present study is investigated the pulsatile and 
laminar blood flow in a rigid artery with stenosis 
using Adina 8.8 finite element software. The 
general form of the governing equations of fluid 
motion (momentum equation and continuity 
equation) is as follows [17]:  
 

∂(ρV)

∂t
+ ∇. (ρVV − τ̅) = fB (1) 

∂ρ

∂t
+ ∇. (ρV) = 0 (2) 

 
where, t is time, ρ is density, V is the velocity 
vector, fB is vector of volumetric force exerted on 
the fluid (assumed to be zero here), and τ is the 
stress tensor which is calculated from the 
following equation: 
 

τ = −PI + 2μe (3) 

e =
1

2
(∇V + ∇VT) (4) 

 

where, P is pressure, I is the unit matrix, and µ is 
the apparent viscosity of the fluid (blood). 
Newtonian viscosity is equal to 0.0033 Pa.s. The 
non-Newtonian fluid models which were used to 
model the non-Newtonian behavior of blood are 
Power-law [18], Carreau [18], Carreau-Yasuda 
[19], Modified-Casson [20], Generalized Power-
law [21], and Walburn-Schneck [22] that 
respectively are shown in the below equations: 
 

μ = k|γ̇|n−1 (5) 
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k = 0.035, n = 0.6 
μ = μ∞ + (μ0 − μ∞)(1 + A|γ̇|2)n 
A = 10.976, n = −0.3216,  
μ∞ = 0.0033, μ0 = 0.056 
 

(6) 
 
 

μ = μi +
μ0 − μi

[1 + (λ|γ̇|b)]a
 

μ0 = 0.016, μi = 0.0033, λ = 8.2,  
b = 1.23, a = 0.64 
 

(7) 

μ = [√τy (
1 − e−m|γ̇|

|γ̇|
) + √μc]

2

 

μc = 0.0033, m = 100 
 

(8) 

μ = k(γ̇)|γ̇|n(γ̇)−1 

k(γ̇) = μ∞ + ∆μ exp [− (1

+
|γ̇|

a
) exp (

−b

γ̇
)] 

n(γ̇) = n∞ − ∆n exp [−(1

+
|γ̇|

c
)exp (

−d

γ̇
)] 

μ∞ = 0.0033, ∆μ = 0.25, n∞

= 1, ∆n = 0.45, a
= 50, b = 3, c
= 50, d = 4 

(9) 

 
μ = a1 exp(a2 +

a3

H2
) |γ̇|(1−a4H) 

a1 = 0.00797 Pa. s, a2

= 0.0608, a3

= 377.7515, a4

= 0.00499 

(10) 

 
 

 
In this paper, a model of the right coronary artery 
with symmetric stenosis and rigid wall is 
considered. Computational domain is shown in 
Fig.1. 
The severity of stenosis was 30, 50, and 70%. The 
equation which describes the shape of stenosis is 
[23-25]:  
 

R(z)

R0

= 1 − (
R0 − R0,t

2R0

)(1

+ cos
2π(z − zm)

Lst

) 
(11) 

where, R0 is the radius healthy vessel and is equal 
to 0.015m, R(z) is the radius of the vessel in 
stenotic region, R0,t is the radius of the vessel at the 
beginning of the stenosis, zm is the axial 
coordinates relative to the origin of coordinates, 
and Lst is length of stenotic region. Also, the length 
of entrance region was 20R0, the length of the 
stenotic region was 4R0, and the length of the 
entrance region was 42.66R0. Blood was 
considered as incompressible fluids with a density 
of 1050 kg/m3. 
Figure 2 shows the average velocity profiles 
applied on the inlet boundary condition [23-25]. 
Time, in Fig. 2, has become dimensionless with 
heart fluctuation period which is 0.8 s. 
Grid independence of results was examined to 
obtain grid independent results to determine the 
best results and to minimize computer running-
time. Three inlet velocity pulses were considered 
to achieve stable and convergent solutions [26]. 
The simulations were performed on a computer 
equipped with a 2.93 GHz processor and 8 G of 
RAM. 
 

 

 
 

Fig. 1. Computational domain for an artery with stenosis and its dimensions. 
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Fig. 2. Inlet velocity pulse [23-25]. 

3. Validity of the solution  
 
A numerical study by Jeong et al. [27] was used 
to check the validity of numerical methods used 
in the stenotic unsteady case. They investigated 
the left coronary artery. In their study, blood 
vessel wall was assumed to be rigid, and blood 
was assumed to be Newtonian fluid. The 
comparison of dimensionless pressure drop and 
shear stress between the results of this study and 
that of Jeong et al. [27] are shown in Fig. 3. The 
parameters were made dimensionless using 
dynamic pressure, which was calculated based on 
the average velocity. As can be seen, the results 
of this study and that of Jeong et al. [27] are in a 
good agreement. 
 
4. Results and discussion 

 
4.1. Important global factor 
 
IG, or global non-Newtonian importance factor, 
is defined to allow for quantitative comparison 
between different non-Newtonian and Newtonian 
models [28-30]: 

IG =
1

N

[∑ (μ − μ∞)2
N ]

1

2

μ∞
 (12) 

In the above equation, all N nodes which were 
encompassed in the region are used to determine 
the importance factor of non-Newtonian 
behavior. In that equation, μ is the effective 
viscosity, and μ∞ is Newtonian viscosity, which is 
equal 0.0035 in the present study. It should be 
noted that in Johnston et al. [29], N was the 
number of nodes on the vessel wall. On the other 
hand, in this numerical study, according to Razavi 
et al. [28] and Soulis et al. [30], N is the total 
number of points in the computational domain, so 
that the effects of different number of nodes on 
the wall would be reduced in comparison 

between different cases. It is important to find a 
criterion, above which the assumption of non-
Newtonian fluid can be made.  
 

 

 
Fig. 3. Axial dimensionless; (a) Pressure drop and 
(b) Wall shear stress. 

Fig. 4. IG for 30% stenosis. 
 

4. 2. Effect of stenosis percentage on IG 

 
Figure 4 shows the importance factor of non-
Newtonian behavior in terms of time for different 
models in a 30%   stenosis severity. Power-law 
model yielded higher values compared to other 
models, which is associated with the trend of 
viscosity variations in terms of shear rate. That is 
because even at high shear rates, there was a 
difference between the Power-law model and the 
Newtonian model, but in models like Carreua-
Yasuda and Casson, viscosity approached to 
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Newtonian viscosity with increasing shear rate. 
Walburn-Schneck model yielded lower values 
compared to other models. It was also associated 
with the trend of viscosity in this model because 
the viscosity values obtained from this model 
were lower compared with other models. 
As shown in Fig. 4, in peak flow rate, the Carreua, 
generalized Power-law, Casson and Carreua-
Yasuda models showed a reduction in IG, and 
thus, they approached the Newtonian model. In 
minimum flow rates, these models showed an 
increase in IG, and thus, showed the importance 
of Newtonian behavior. In minimum flow rate, 
Carreua-Yasuda model was more sensitive to the 
non-Newtonian behavior of blood compared to 
Carreua, Casson, and Power-law models. In this 
period, Walburn-Schneck was less sensitive to 
the non-Newtonian behavior of blood. On the 
other hand, in the time period of maximum flow 
rate, increase in IG, and consequently, diverging 
from the Newtonian model was seen in this 
model. Therefore, Power-law model is not 
suitable, because it shows extreme sensitivity to 
dimension. Also, Walburn-Schneck model is not 
suitable, because it lacks sensitivity. 
Table 1 shows the values of global importance for 
the six non-Newtonian models. The comparison 
of the values of global importance in different 
stenosis severities shows that IG does not follow 
the same trend in different models. For example, 
in Casson and Carreua-Yasuda models, this 
factor increases with increase in stenosis severity. 
In Power-law and Walburn-Schneck models, this 
factor decrease with increase in stenosis severity, 
which is associated with changes in the viscosity 
in terms of shear rate for each of these models. IG 
is a criterion, i.e. below IG, the fluid behavior is 
Newtonian, and above that, the behavior is non-
Newtonian. According to Table 1, IG was 
calculated as 0.4. In numerical studies conducted 
by Razavi et al. [28], Johnson et al. [29], and 
Soulis et al. [30], IG was determined as 1, 0.25, 
and 0.25, respectively. 
 
4.3. Effect of non-Newtonian model on axial 
velocity profile 
 
The results discussed in this section were 
obtained from the model with 70% stenosis 
severity. In this model, a major part of the luminal 

area was affected by separation phenomenon. 
The stenosis makes it difficult for flow to pass the 
vessel and can cause problems in medical 
context. Figure 5 shows the axial velocity profiles 
at sections 1 through 4 for the Newtonian model, 
as well as six non-Newtonian models, at t=0.24s. 
Section 1 is the throat of stenosis, section 2 is at 
one diameter distance from the neck, section 3 is 
at two diameter distance from the throat, and 
section 4 is at four diameter distance from the 
throat. The comparison between the graphs 
shows that there is a slight difference between 
Newtonian model and four non-Newtonian 
models: Carreua, Carreua-Yasuda, Casson, and 
generalized Power-law. Power-law model 
showed the lowest axial velocity.  
 
4.4. Effect of stenosis percentage on pressure drop 
 
The trend of variations in arterial pressure in the 
axial direction is compared in Fig.6 between 
Newtonian and six non-Newtonian models with 
stenosis percentages of 30, 50, and 70%. 
According to Fig. 6, with an increase in stenosis 
severity, pressure increases in the first half of the 
stenosis. There is also a sharp drop in pressure 
due to the stenosis. If the percentage of arterial 
stenosis and pressure gradient along the artery is 
high enough, the pressure may be negative at the 
neck. Negative pressure can damage the plaques. 
As can be seen, Power-law and Walburn-Schneck 
models showed lower pressure difference (inlet-
outlet) compared with other models. These 
differences can affect the stresses and strains in 
these regions. 
 
4.5. Effect of stenosis on wall shear stress 
 
Time-averaged shear stress (Mean WSS) is a 
hemodynamic parameter that has been used in 
different studies to determine atherosclerosis-
prone areas. It is defined as follows [28]: 

Mean WSS =
1

T
∫ τw dt

T

0

 (13) 

where, T is the period of cardiac cycles, and τ is 
the shear stress vector. Regions with low time-
averaged shear stress (less than 1 Pa), or with high 
shear index are known to be prone to 
atherosclerosis [31]. Figure 7 shows the graphs of 
time-averaged shear stress and oscillatory shear 
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index for the six non-Newtonian models 
compared to Newtonian model for 50% stenosis 
severity. Increase in time-averaged shear stress 
can increase nitric oxide production by 
endothelial cells [32]. Nitric oxide protects 
endothelial cells from apoptosis and leads to the 
proliferation of these cells to cover plaque’s 
surface during plaque growth. As can be seen 
from Fig. 7, at downstream and upstream of the 
stenosis, Carreua, Carreua-Yasuda, and Casson 
models estimated greater shear stress values 
compared to Newtonian Model. At the stenosis 
region, where shear stress increases significantly, 
these models showed values similar to the 
Newtonian model, and their sensitivity to the 
non-Newtonian behavior of blood was good.  
Generalized Power-law model showed values 
closer to Newtonian model, but, before and after 

the stenosis, the Power-law and Walburn-Schneck 
models showed lower shear stress values 
compared to the Newtonian model. Also in the 
stenosis region, these models showed lower shear 
stress values compared to the Newtonian model, 
which is not correct. 
As can be seen, Carreua and Casson models 
showed almost similar results. Generalized 
Power-law model showed variations close to the 
Newtonian model. The small values of time-
averaged shear stress (less than 1 pa) and high 
oscillatory shear stress increase rupture in 
intercellular links, as well as permeability in the 
cells in these regions [33]. Low time-averaged 
shear stress values show atherogenic conditions 
in post-stenosis region.  

 

 
Table 1. IG for different stenosis percentage. 

% Stenosis Walburn–Schneck Power-law Generalized Power-law Casson Carreau–Yasuda Carreau 
30  0.300 1.334 0.459 0.395 0.486 0.477 
50 0.294 1.268 0.457 0.404 0.488 0.465 
70 0.286 1.181 0.454 0.421 0.496 0.448 

 

 
 

  

Fig. 5. Axial velocity profile, t=0.24s; (a) section 1, (b) section 2, (c) section 3, and (d) section 4. 

(a) (b) 

(c) (d) 
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Fig. 6. Effect of stenosis percentage on pressure drop, t=0.24s; (a) 30%, (b) 50%, and (c) 70%. 

   

   

Fig. 7. Mean WSS, 50% stenosis; (a) Carreau, (b) Carreau-Yasuda, (c) Casson, (d) Generalized Power-law,(e) 
Power-law, and (f) Walburn-Schneck. 

 

5. Conclusions 
 
In this paper, ADINA 8.8 software was used to 
investigate pulsatile non-Newtonian blood flow in 
arteries with symmetrical 30, 50, and 70% 
stenosis. The results showed that Power-law model 
yielded higher values of IG compared to other 
models, which is associated with the trend of 
viscosity variations in terms of shear rate. Also, 
the comparison of the values of IG in different 
stenosis severities showed that IG does not follow 
the same trend in different.According to the 

results, IG criterion was selected to be 0.4. The 
results showed that the Power-law and Walburn-
Schneck models have the lowest axial velocity, the 
lowest pressure difference between inlet and 
outlet, and the lowest shear stress. 
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