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1. Introduction

Composite materials offer higher specific 
strength and stiffness than conventional 
materials. Relative lightness of composite 
materials enables the use of bigger sections that 
are inherently stiffer and stronger for bending 
and torsion, which is a considerable advantage 
for engineering structures. These materials offer 
outstanding fatigue and durability potentials 
and are very resistant to environmental 
conditions such as moisture, chemical attack, 
and high temperatures. To use these materials 
efficiently, it is necessary to develop 
appropriate models capable of accurately 
predicting their structural and dynamical 
behaviors [1, 2]. 

The Vibration of composite laminated 
rectangular plates has been extensively studied 
inthe past years. Malik et al. [3] presented 
accurate three-dimensional elasticity solutions 
for the free linear vibrations of rectangular 
plates for some combinations of boundary 
conditions. Xiang et al. [4] focused for the first 
time on the free linear vibration analysis of 
laminated composite square plates using the 
trigonometric shear deformation theories. Wu et 
al. [5] used the mesh free least-squares-based 
finite difference (LSFD) method for solving 
large-amplitude free vibration problem of 
arbitrarily shaped thin plates. Finite element 
methods are widely used in studying linear and 
nonlinear vibration of rectangular laminates [6–
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18]. Some authors have used various numerical 
methods for studying the dynamical behavior of 
plates [19-23]. Many others have used 
analytical methods to study the vibration of 
plates [24-31]. 
Zhang et al. [32] used an artificial neural 
network to predict the dynamic mechanical 
properties of PTFE based short carbon fiber 
reinforced composites. Jodaei et al. [33] 
employed an optimal ANN method to model 
the functionally graded annular plates and 
predict the effects of different parameters on the 
natural frequency of the plates. They also used 
an artificial neural network to model the three-
dimensional free vibration analysis of 
functionally graded piezoelectric annular plates 
[34]. Singh et al. [35] developed a regression 
based artificial neural network model to find the 
frequency of annular elliptic and circular plates. 
Gunes et al. [36, 37] investigated the free 
vibration behavior of an adhesively bonded 
functionally graded single lap joint using the 
finite element method and back-propagation 
artificial neural network method. Apalak and 
Yildirim [38] analyzed the first ten natural 
frequencies and mode shapes of the adhesive 
joint of an adhesively bonded composite single 
lap joint with unidirectional laminated narrow 
plates and subject to clamped-free condition. 
Rouss et al. [39] designed an experimental set 
to model a complex nonlinear mechanical 
system by a multilayer perceptron neural 
network. Reddy et al. [40] used an artificial 
neural network to predict the natural frequency 
of laminated composite plates under clamped 
boundary condition and applied some finite 
element software to obtain the required natural 
frequencies for training and testing the ANN 
model.  
In this paper, the nonlinear equations of motion 
were derived for laminated composite 
rectangular plates. Anti-symmetric angle-ply 
and symmetric cross-ply composite plates were 
also considered. The boundary condition was 
taken to be movable simply-supported. Using a 
simple procedure compared with other 
analytical studies along with a perturbation 
method, the nonlinear equation of motion was 
solved and analytical relations were obtained 

for natural and nonlinear frequencies. proving 
the validity of the obtained analytical relations, 
as an alternative and simple modeling 
technique, ANN was also employed to model 
the laminated rectangular plates and predict 
effects of different parameters on natural and 
nonlinear frequencies of the plates. In this 
respect, an optimal ANN was selected and 
trained by training data sets obtained from 
analytical method and also tested by testing 
data sets. The obtained results were in good 
agreement with the analytical method and 
published results. 
 
2. Analytical solution 
 
2. 1. Solving the problem  
 
Equations of motion of rectangular plates, 
based on the first order shear deformation 
theory are [41]: 
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where subscript ‘,’ denotes partial 
differentiation with respect to the following 
parameters,u0, v0, and w0 are the displacements 
of a material point on the mid-surface along x-, 
y-, and z- axes, respectively, φx  and φy are the 
rotations of a transverse normal about the y- and 
x-axes, respectively (Fig. 1),Nx, Ny, and Nxy are 
the in-plane force resultants, Qx and Qy are the 
transverse force resultants, Mx, My, and Mxy are 
the moments resultants,I0, I1, and I2 are the mass 
moments of inertia, q is the applied transverse 
force which is zero in the free vibration, and
 0w is the only nonlinear term in the 

equations of motion and is in the following 
form: 
     0 0, 0, 0, 0,, ,x x xy y xy x y yx y
w N w N w N w N w    

        (6)
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The boundary condition is taken to be movable 
simply-supported which is expressed by: 
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Where a and b are the length and width of the 
plate, respectively, and ψ is the force function 
defined by: 

, , ,x yy y xx xy xyN N N                     (8) 
Assuming the density of plate material (ρ0) as 
an even function of thickness (z) and dealing 
with thin plates which makes it possible to 
neglect the in-plane inertia effects (i.e. u0,tt and 
v0,tt), Eqs. (1-5) are reduced to the following 
equations, which are written in terms of the 
displacements and force function [25]: 
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                                                                      (11) 
along with a compatibility equation in the  
following form [25, 42]: 
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Where K is shear correction factor, Aij are 
extensional stiffness, Bij are bending-extension-
coupling stiffness, and Dij are  bending 
stiffness. Unknown parameters of Eqs. (10-12) 
are obtained by [41- 43]:  
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where, for the symmetric plates, B = 0 must be 
considered. 
For the boundary condition of Eq. (7), a trial 
function for ݓ can be assumed as: 
 

   ( )sin sinw hf t x a y b                   (14) 

 
Where h is thickness of the plate and f(t) is an 
unknown time function. So, the force function 
is obtained by substituting Eq. (14) for Eq. (12): 
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Equations (10 and 11) lead to a set of equations 
with two unknown parameters which are φx and 
φy. By solving this set of equations and 
substituting the obtained parameters (i.e. φx 
andφy) along with ψ from Eq. (15) for Eq. (9), 
the following nonlinear partial differential 
equation is obtained (φx and φy are given in 
Appendix A): 
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Where Li
* are partial differential operators 

given in Appendix A for the anti-symmetric 
angle-ply laminated rectangular plates. 
The Galerkin method is applied by ∫∫AL∙wdxdy= 
0, in which A is area of the rectangular plate 
and L is the left-hand side of Eq. (16); it 
transforms the nonlinear PDE of Eq. (16) into a 
nonlinear ODE in terms of f(t). Substitution of 
the dimensionless time 2t a   for this 
nonlinear ODE results in the following 
dimensionless nonlinear ODE: 

2 2 3 2 2 2 2
, , , 0f f f f f f f                           

                                                                              (17) 
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Fig. 1. Generalized displacements of a rectangular plate in the first order shear deformation theory. 
 
 

where ω is dimensionless natural frequency, α2 
is coefficient of nonlinear stiffness term, and β2 
and γ2 are coefficients of nonlinear inertia 
terms. In dimensionless time (τ), Λ = E2h3/I0. 
To solve Eq. (17) by a perturbation method, the 
nonlinear terms of Eq. (17) are multiplied by a 
small, dimensionless parameter (ε) which is 
equated to unity after computations. ε is the 
order of the amplitude of motion and is used as 
a bookkeeping device in obtaining the 
approximate solution. So, the nonlinear terms 
of Eq. (17) are multiplied by ε to make the use 
of perturbation method possible: 

2 2 3 2 2 2 2
, , ,f f f f f f f         

    (18) 
According to Nayfeh and Mook [44], the 
independent time variables are defined by Tn = 
εnτ, (n = 1,2,…), and f can be approximated by 
f(τ,ε) = f0(T0,T1) + εf1(T0,T1). Derivatives with 
respect to τ in Eq. (18) can be written in terms 
of partial derivatives of Tn. To this end, it 
should be noted that d/dτ = D0 + εD1 and d2/dτ2 
= D0

2 + 2εD0D1, where D0 and D1 denote ∂/∂T0 
and ∂/∂T1, respectively. Therefore, substitution 
of these relations for Eq. (18) gives: 
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The solution of Eq. (19) is: 
   0 1 0expf X T i T cc                  (21) 

where X is an unknown complex function of T1 
and cc denotes the complex conjugate of 
preceding term. 
To have a periodic solution after the 
substitution of Eq. (21) for Eq. (20), the 
following is required [44]:  
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which is called solvability condition. If Eq. (22) 
is not satisfied, instability occurs and the 
amplitude of motion grows over time.  
By defining X in the polar form (i.e., X = 
(r/2)exp(is)) and after its substitution in the 
above equation, the nonlinear frequency is 
obtained: 
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where r0 is a constant parameter which shows 
the dimensionless initial displacement (i.e., r0 ≡ 
wmax/h). The unknown parameters of Eq. (23) 
are: 
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2. 2. Validating the analytical solution 
 
For a four-layered cross-ply square plate with 
the following material properties; E1/E2 = open; 
G12 = G13 = 0.6E2; G23 = 0.5E2; ν12 = 0.25, some 
dimensionless frequencies (ω) are obtained and 
compared with the results of Liew et al. [45] 
which is shown in Table 1. It can be observed 
that, for thinner plates and for plates with low 
orthotropy degrees (E1/E2 ratios), the obtained 
frequencies are more accurate. Fundamental 
frequencies of a four-layered 
[45°/−45°/45°/−45°] composite plate are 
compared with some published results which 
are shown in Table 2. Material properties of the 
studied plate are: E1 = 40E2, G12 = 0.6E2, ν12 = 
0.25, G13 = G23 = 0.5E2. Although the proposed 
analytical procedure is based on the first order 
shear deformation theory, according to Table 2, 
the results are in good agreement with the 
results of highly accurate higher order shear 
deformation theory (HSDT) presented by 
Alibeigloo et al. [46]. 
Nonlinear frequency ratio (ωNL/ω) of an 
isotropic square plate is also obtained which is 
shown in Table 3. Accordingly, the considered 
analytical approach gives good results for the 
nonlinear frequency as well. It is also observed 
that the nonlinear frequency is related to the 
amplitude of motion in a way that the increase 
of initial displacement results in higher 
nonlinear frequencies. So, the validity of the 
analytical solution is approved and 
subsequently Eqs. (17 and 23) are used to 
obtain the required data in training the neural 
network model. 
 
Table 1. Dimensionless fundamental frequency of a 
symmetric laminated square plate. 

a/h Solutions E1/E2 
10 20 30 

5 Liew et al. [45] 
Analytical 

8.299 
8.439 

9.568 
9.821 

10.327 
10.664 

10 Reddy [41] 
Analytical 

9.853 
9.862 

12.383 
12.261 

13.892 
13.928 

 
 

Table 2. Comparing the dimensionless fundamental 
frequency of a four-layered rectangular plate. 
Method a/b 1 2 
Ghosh and Dey [12] 
HSDT [46] 
Analytical 

a/
h 

10 
18.06 
17.974 
18.044 

31.28 
33.553 
33.496 

Ghosh and Dey 
HSDT 
Analytical 

30 
23.28 
22.691 
22.675 

50.89 
49.547 
49.644 

Ghosh and Dey 
HSDT 
Analytical 

50 
23.91 
23.296 
23.210 

53.68 
52.254 
52.155 

 
Table 3. Nonlinear frequency ratio of isotropic 
square plates (a/h = 100, ν = 0.3). 
r0 0.2 0.6 1.0 
Singha and Daripa 
[17] 1.00516 1.04559 1.12239 

Experimental [21] 1.00634 1.04502 1.11994 
Analytical 1.00511 1.04525 1.12197 

 
3. Neural network modeling 
 
3. 1. Constructing the neural network model 
 
The main advantage of ANN is its ability to 
model a problem using examples, rather than 
analytical description. Figure 2 shows the basic 
configuration of a neuron model. 
An ANN model needs to be trained from an 
existing training set including many pairs of 
input–output elements. One of the most popular 
learning algorithms is the back-error  
propagation algorithm [47], which trains a 
neural network until the mean square errors 
between the training output data and the 
predicted output are minimized. 
In this study, the proposed ANN model shown 
in Fig. 3 was trained by the input data obtained 
from Eqs. (17 and 23). The input layer needs 
random sets of data including E1/E2, G12/E2, 
G13/E2, G23/E2, a/b, and a/h ratios, number of 
layers (N), and fiber orientation (θ) for each of 
the training seasons. Also, the output layer 
gives the predicted dimensionless natural 
frequency and nonlinear frequency ratio. 
This configuration has 8–21–19–2 neurons in 
the input, hidden and output layers, 
respectively. The Levenberg–Marquardt back-
propagation algorithm is used in a feed-
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forward, two hidden layer network [36, 47]. 
The tangent sigmoid transfer function is used as 
 

 
Fig. 2. A typical neuron model. 

 
the transfer functions. The proposed neural 
network model was developed in MATLAB 
environment using the neural network toolbox. 
The input data set included 1200 patterns based 
on analytical solution developed in the previous 
section for a random set of design variables. 
Random 840 data patterns were used for the 
training of the neural network model and the 
remaining 360 patterns were randomly selected 
to use as validation and testing (180 patterns for 
each). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 3. ANN model of the present study. 

3. 2. Results of the proposed ANN model  
 
The database in this study included 840 data 
sets for different plate parameters obtained from 
the analytical analysis. Results of the 

performance of the proposed 8–21–19–2 ANN 
model are given in Fig. 4, which shows the 
mean squared error of the network starting at a 
large value and decreasing to a smaller value. In 
other words, the network was learning. The plot 
had three lines, because the whole input and 
target vectors were randomly divided into three 
sets. Training on the training vectors continued 
as long as the training reduced the network's 
error on the validation vectors. 
For a three-layered cross-ply square laminated 
plate with the following material properties; E1 
= 40E2, G12 = G13 = 0.6E2, G23 = 0.5E2, ν12 = 
0.25, ω and ωNL/ω were obtained by the ANN 
model and the results were compared with those 
of the analytical and previously published ones, 
which are shown in Table 4 and Fig. 5, 
respectively .  
In Table 5, frequencies of an eight-layered anti-
symmetric square composite plate are given. 
The material properties were the same as the 
previous case and again the ANN model had 

good results compared with others in the 
literature and the analytical results. Tables 4 
and 5 show that the increase of the length-to-
thickness ratio increased dimensionless 
frequency, but decreased nonlinear frequency 
ratio of rectangular plates. It is observed in Fig. 
5 that ANN model predicted the frequencies 
similar to Nguyen-Van et al. [48] and better 
than Ferreira et al. [49] which are both based on 
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Fig. 4. Performance of the proposed ANN model. 
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FSDT while the compared results in Table 5, 
i.e., Akhras and Li [50] and Reddy and Phan 
[51] are based on HSDT. 
Effects of fiber orientation angle on the natural 
frequency were studied by the ANN model, the 
results of which are shown in Table 6 and 
compared with those of Reddy [41] and Xiang 
and Kang [52]. It can be observed that, by 
increasing the fiber orientation angle, the 
dimensionless frequency of the anti-symmetric 
rectangular plates increased, because for higher 
fiber orientation angles, the stiffness of the plate 
increased and in turn  resulted in  the  increased  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

natural frequency of the plate. 
 
4. Conclusion 
 
In this study, linear and nonlinear free 
vibrations of laminated rectangular plates were 
studied using an analytical method and 
comparative behavior modeling by ANN. The 
state variables included a combination of four 
moduli ratios, aspect ratio, length to thickness 
ratio, number of layers, and fibers orientation. 
The  convergence  and  accuracy  of the  present 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
Fig. 5. Dimensionless frequencies of a three-layered [0°/90°/0°] cross-ply square plate. 
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Table 4.Comparing the frequencies of a cross-ply [0°/90°/0°] square plate predicted by ANN model with the 
analytical solution. 

a/h Model ω ωNL/ω 

10 
Analytical 
ANN 
model 

14.8253 
14.8270 

1.2417 
1.2337 

20 
Analytical 
ANN 
model 

17.5108 
17.5396 

1.1938 
1.1840 

25 
Analytical 
ANN 
model 

17.9708 
17.9723 

1.1853 
1.1751 

50 
Analytical 
ANN 
model 

18.6474 
18.6552 

1.1738 
1.1602 

100 
Analytical 
ANN 
model 

18.8317 
18.7359 

1.1589 
1.1638 
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method were validated by comparing the 
obtained results with those published in the 
literature. The results demonstrated that ANN 
can acceptably model the linear and nonlinear 
behaviors of laminated rectangular plates.  
It was also seen that: 
 Higher aspect ratios, length-to-thickness 

ratios, and moduli ratios increased 
dimensionless frequency of composite 
rectangular plates (see Tables 1 and 2). 

 Unlike the linear frequency, nonlinear 
frequency was a function of the amplitude 
of motion which can be observed in Eq. 
(23) and Table 3. 

 Length-to-thickness ratio had a minor effect 
on the nonlinear frequency ratio of 
composite rectangular plates (see Tables 4 
and 5). 

 Fiber orientation tended to increase the 
stiffness of the anti-symmetric rectangular 
plate, which was why dimensionless 
frequency of a plate with higher fiber 
orientation angle was higher (see Table 6). 

 
Table 5. Frequencies of an eight-layered 
[45°/−45°/…] square laminated plate. 
a/h Model ω ωNL/ω 

10 

Akhras and Li [50] 
Reddy and Phan [51] 
Analytical 
ANN model 

19.264 
19.266 
19.3422 
19.3190 

- 
- 
1.0171 
1.0161 

20 

Akhras and Li  
Reddy and Phan 
Analytical 
ANN model 

23.238 
23.239 
23.3135 
23.3007 

- 
- 
1.0120 
1.0142 

100 

Akhras and Li  
Reddy and Phan 
Analytical 
ANN model 

25.175 
25.174 
25.179 
25.1802 

- 
- 
1.0104 
1.0111 

 
 
Table 6. Dimensionless frequencies of a six-layered 
anti-symmetric square plate (a/h = 20). 

θ Method ω 

30° 
Reddy [41] 
Xiang and Kang [52] 
ANN model 

21.648 
22.2841 
22.8018 

45° 
Reddy 
Xiang and Kang 
ANN model 

22.877 
23.6072 
23.2616 

 
 

References 
 
[1]  B. Harras, R. Benamar and R. G. White, 

“Experimental and theoretical 
investigation of the linear and non-linear 
dynamic behaviour of a Glare 3 hybrid 
composite panel”, Journal of Sound and 
vibration, Vol. 252, No. 2, pp. 281-315, 
(2002). 

[2]  W. Zhen and C. Wanji, “Free vibration of 
laminated composite and sandwich plates 
using global–local higher-order theory”, 
Journal of Sound and Vibration, Vol. 
298, No. 1-2, pp. 333-349, (2006). 

[3]  M. Malik and C. W. Bert, “Three-
dimensional elasticity solutions for free 
vibrations of rectangular plates by the 
differential quadrature method”, 
International Journal of Solids and 
Structures, Vol. 35, No. 3-4, pp. 299-318, 
(1998). 

[4]  S. Xiang and K. M. Wang, “Free 
vibration analysis of symmetric 
laminated composite plates by 
trigonometric shear deformation theory 
and inverse multiquadric RBF”, Thin-
Walled Structures, Vol. 47, No. 3, pp. 
304-310, (2009). 

[5]  W. X. Wu, C. Shu and C. M. Wang, 
“Mesh-free least-squares-based finite 
difference method for large-amplitude 
free vibration analysis of arbitrarily 
shaped thin plates”, Journal of Sound and 
Vibration, Vol. 317, No. 3-5, pp. 955-
974, (2008). 

[6]   G. R. Liu, X. Zhao, K. Y. Dai, Z. H. 
Zhong, G. Y. Li and X. Han, “Static and 
free vibration analysis of laminated 
composite plates using the conforming 
radial point interpolation method”, 
Composites Science and Technology, 
Vol. 68, No. 2, pp. 354-366, (2008). 

[7]  M. Ćetković and D. J. Vuksanović, 
“Bending, free vibrations and buckling of 
laminated composite and sandwich plates 
using a layerwise displacement model”, 
Composite Structures, Vol. 88, No. 2, pp. 
219-227, (2009). 



JCARME                                             Large amplitude vibration . . .            Vol. 4, No. 1, Autumn 2014 

63 

 

[8]  W. Zhen, Y. K. Cheung, S. H. Lo and W. 
Chen, “Effects of higher-order global-
local shear deformations on bending, 
vibration and buckling of multilayered 
plates”, Composite Structures, Vol. 82, 
No. 2, pp. 277-289, (2008). 

[9]  P. Ribeiro and M. Petyt, “Non-linear 
vibration of composite laminated plates 
by the hierarchical finite element 
method”, Composite Structures, Vol. 46, 
No. 3, pp. 197-208, (1999). 

[10]  P. Ribeiro, “Forced periodic vibrations of 
laminated composite plates by a p-
version, first order shear deformation, 
finite element”, Composites Science and 
Technology, Vol. 66, No. 11-12, pp. 
1844-1856, (2006). 

[11]  J. N. Reddy and W. C. Chao, “Large-
deflection and large-amplitude free 
vibrations of laminated composite-
material plates”, Computers & 
Structures, Vol. 13, No. 1-3, pp. 341-347, 
(1981). 

[12]  A. K. Ghosh and S. S. Dey, “Free 
vibration of laminated composite plates-a 
simple finite element based on higher 
order theory”, Computers & Structures, 
Vol. 52, No. 3, pp. 397-404, (1994).  

[13]  P. Dash and B. N. Singh, “Geometrically 
nonlinear bending analysis of laminated 
composite plate”, Communications in 
Nonlinear Science and Numerical 
Simulation, Vol. 15, No. 10, pp. 3170-
3181, (2010). 

[14]  J. S. Chang and Y. P. Huang, “Nonlinear 
analysis of composite anti-symmetric 
angle-ply under uniform temperature 
field”, Computers & Structures, Vol. 40, 
No. 4, pp. 857-869, (1991). 

[15]  J. N. Reddy, “Free vibration of anti-
symmetric, angle-ply laminated plates 
including transverse shear deformation 
by the finite element method”, Journal of 
Sound and Vibration, Vol. 66, No. 4, pp. 
565-576, (1979). 

[16]  Q. H. Cheng, T. S. Lok and Z. C. Xie, 
“Geometrically non-linear analysis 
including shear deformation of composite 

laminates”, Thin-Walled Structures, Vol. 
35, No. 1, pp. 41-59, (1999). 

[17]  M. K. Singha and R. Daripa, “Nonlinear 
vibration and dynamic stability analysis 
of composite plates”, Journal of Sound 
and Vibration, Vol. 328, No. 4-5, pp. 
541-554, (2009). 

[18]  M. Taazount, A. Zinai and A. 
Bouazzouni, “Large free vibration of thin 
plates: Hierarchic finite Element Method 
and asymptotic linearization”, European 
Journal of Mechanics A/Solids, Vol. 28, 
No. 1, pp. 155-165, (2009). 

[19]  F. Boumediene, A. Miloudi, J. M. Cadou, 
L. Duigou and E. H. Boutyour, 
“Nonlinear forced vibration of damped 
plates by an asymptotic numerical 
method”, Computers and Structures, Vol. 
87, No. 23-24, pp. 1508-1515, (2009).  

[20]  L. Azrar, E. H. Boutyour and M. Potier-
Ferry, “Non-linear forced vibrations of 
plates by an asymptotic-numerical 
method”, Journal of Sound and 
Vibration, Vol. 252, No. 4, pp. 657-674, 
(2002). 

[21] M. Amabili, “Nonlinear vibrations of 
rectangular plates with different 
boundary conditions: theory and 
experiments”, Computers and Structures, 
Vol. 82, No. 31-32, pp. 2587-2605, 
(2004). 

[22]  M. Amabili and S. Farhadi, “Shear 
deformable versus classical theories for 
nonlinear vibrations of rectangular 
isotropic and laminated composite 
plates”, Journal of Sound and Vibration, 
Vol. 320, No. 3, pp. 649-667, (2009). 

[23]  B. Bhushan, G. Singh and G. V. Rao, 
“An iteration method for the large 
amplitude flexural vibration of anti-
symmetric cross-ply rectangular plates”, 
Composite Structures, Vol. 18, No. 3, pp. 
263-282, (1991). 

[24]  A. Abe, Y. Kobayashi and G. Yamada, 
“Analysis of sub-harmonic resonance of 
moderately thick anti-symmetric angle-
ply laminated plates by using method of 
multiple scales”, Journal of Sound and 



JCARME                                                    Mahdi Karimi et al.                      Vol. 4, No. 1, Autumn 2014 

 

64 

 

Vibration, Vol. 217, No. 3, pp. 467-484, 
(1998). 

[25]  A. Shooshtari and S. Razavi, “A closed 
form solution for linear and nonlinear 
free vibrations of composite and fiber 
metal laminated rectangular plates”, 
Composite Structures, Vol. 92, No. 11, 
pp. 2663-2675, (2010). 

[26]  I. V. Andrianov, V. V. Danishevs’kyy 
and J. Awrejcewicz, “An artificial small 
perturbation parameter and nonlinear 
plate vibrations”, Journal of Sound and 
Vibration, Vol. 283, No. 3-5, pp. 561-
571, (2005). 

[27]  R. L. Woodcock, R. B. Bhat and I. G. 
Stiharu, “Effect of ply orientation on the 
in-plane vibration of single-layer 
composite plates”, Journal of Sound and 
Vibration, Vol. 312, No. 1-2, pp. 94-108, 
(2008). 

[28]  W. S. Kuo and I. H. Yang, “Generic 
nonlinear behavior of anti-symmetric 
angle-ply laminated plates”, 
International Journal of Mechanical 
Sciences, Vol. 31, No. 2, pp. 131-143, 
(1989). 

[29]  K. Swaminathan and S. S. Patil, 
“Analytical solutions using a higher order 
refined computational model with 12 
degrees of freedom for the free vibration 
analysis of anti-symmetric angle-ply 
plates”, Composite Structures, Vol. 82, 
No. 2, pp. 209-216, (2008). 

[30]  G. Janevski, “Asymptotic solution of 
nonlinear vibrations of anti-symmetric 
laminated angle-ply plate”, FME 
Transactions, Vol. 30, No. 2, pp. 77-84, 
(2002). 

[31]  G. Janevski, “Two-frequency nonlinear 
vibrations of anti-symmetric laminated 
angle-ply plate”, Factauniversitatis-
Series: Mechanics, Automatic Control 
and Robotics, Vol. 4, No. 1, pp. 345-358, 
(2004). 

[32]  Z. Zhang, P. Klein and K. Friedrich, 
“Dynamic mechanical properties of 
PTFE based short carbon fiber reinforced 
composites: experiment and artificial 
neural network prediction”, Composites 

Science and Technology, Vol. 62, No. 7-
8, pp. 1001-1009, (2002). 

[33]  A. Jodaei, M. Jalal and M. H. Yas, “Free 
vibration analysis of functionally graded 
annular plates by state-space based 
differential quadrature method and 
comparative modeling by ANN”, 
Composites: Part B, Vol. 43, No. 2, pp. 
340-353, (2012).  

[34]  A. Jodaei, M. Jalal and M. H. Yas, 
“Three-dimensional free vibration 
analysis of functionally graded 
piezoelectric annular plates via SSDQM 
and comparative modeling by ANN”, 
Mathematical and Computer Modelling, 
Vol. 57, No. 5-6, pp. 1408-1425, (2013). 

[35]  V. P. Singh, S. Chakraverty, R. K. 
Sharma and G. K. Sharma, “Modeling 
vibration frequencies of annular plates by 
regression based neural network”, 
Applied Soft Computing, Vol. 9, No. 1, 
pp. 439-447, (2009). 

[36]  R. Gunes, M. K. Apalak, M. Yildirim and 
I. Ozkes, “Free vibration analysis of 
adhesively bonded single lap joints with 
wide and narrow functionally graded 
plates”, Composite Structures, Vol. 92, 
No. 1, pp. 1-17, (2010).  

[37]  R. Gunes, M. K. Apalak and M. Yildirim, 
“The free vibration analysis and optimal 
design of an adhesively bonded 
functionally graded single lap joint”, 
International Journal of Mechanical 
Sciences, Vol. 49, No. 4, pp. 479-499, 
(2007). 

[38]  M. K. Apalak and M. Yildirim, “Free 
Vibration Analysis and Optimal Design 
of a Clamped-free Single Lap Joint with 
Unidirectional Laminated Narrow 
Plates”, Journal of Thermoplastic 
Composite Materials, Vol. 22, No. 2, pp. 
183-211, (2009). 

[39]  V. Rouss, W. Charon and G. Cirrincione, 
“Neural model of the dynamic behaviour 
of a non-linear mechanical system”, 
Mechanical Systems and Signal 
Processing, Vol. 23, No. 4, pp. 1145-
1159, (2009). 



JCARME                                             Large amplitude vibration . . .            Vol. 4, No. 1, Autumn 2014 

65 

 

[40]  M. R. S. Reddy, B. S. Reddy, V. N. 
Reddy and S. Sreenivasulu, “Prediction 
of Natural Frequency of Laminated 
Composite Plates Using Artificial Neural 
Networks”, Engineering, Vol. 4, No. 6, 
pp. 329-337, (2012). 

[41]  J. N. Reddy, “Mechanics of laminated 
composite plates and shells: theory and 
analysis”, 2nd Edition, CRC Press, 
(2004). 

[42]  C. Y. Chia, “Nonlinear Analysis of 
Plates”, McGraw-Hill, (1980). 

[43]  R. M. Jones, “Mechanics of composite 
materials”, 2nd Edition, Taylor Francis 
Inc., (1999). 

[44]  A. H. Nayfeh and D. T. Mook, 
“Nonlinear Oscillations”, John Wiley & 
Sons Inc., (1995). 

[45]  K. M. Liew, Y. Q. Huang and J. N. 
Reddy, “Vibration analysis of 
symmetrically laminated plates based on 
FSDT using the moving least squares 
differential quadrature method”, 
Computer Methods in Applied Mechanics 
and Engineering, Vol. 192, No. 19, pp. 
2203-2222, (2003). 

[46]  A. Alibeigloo, M. Shakeri and M. R. 
Kari, “Free vibration analysis of anti-
symmetric laminated rectangular plates 
with distributed patch mass using third-
order shear deformation theory”, Ocean 
Engineering, Vol. 35, No. 2, pp. 183-190, 
(2008). 

[47]  M. T. Hagan and M. Menhaj, “Training 
feed-forward networks with the 
Marquardt algorithm”, IEEE 
Transactions on Neural Networks, Vol. 
5, No. 6, pp. 989-993, (1994). 

[48] H. Nguyen-Van, N. Mai-Duy, W. 
Karunasena and T. Tran-Cong, 
“Buckling and vibration analysis of 
laminated composite plate/shell 
structures via a smoothed quadrilateral 
flat shell element with in-plane 
rotations”, Computers and Structures, 
Vol. 89, No. 7-8, pp. 612-625, (2011). 

 
 

[49]  A. J. M. Ferreira, R. M. N. Jorge and C. 
M. C. Roque, “Free vibration analysis of 
symmetric laminated composite plates by 
FSDT and radial basis functions”, 
Computer Methods in Applied Mechanics 
and Engineering, Vol. 194, No. 39-41, 
pp. 4265-4278, (2005). 

[50]  G. Akhras and W. Li, “Static and free 
vibration analysis of composite plates 
using spline finite strips with higher-
order shear deformation”, Composites: 
Part B, Vol. 36, No. 6-7, pp. 496-503, 
(2005). 

[51]  J. N. Reddy and N. D. Phan, “Stability 
and vibration of isotropic, orthotropic 
and laminated plates according to a 
higher-order shear deformation theory”, 
Journal of Sound and Vibration, Vol. 98, 
No. 2, pp. 157-170, (1985). 

[52]  X. Song and G. Kang, “Local thin plate 
spline collocation for free vibration 
analysis of laminated composite plates”, 
European Journal of Mechanics A/Solids, 
Vol. 33, No. 1, pp. 24-30, (2012). 

 
Appendix A 

 

 

2

1 66 12 3 44

2 2 2

2 66 22 2 442 2 2

,

.1

L D D L KA
x y y

L D D I K A A
x y t

 



 
  

  

  
   

  

   

2 2 2

4 11 66 2 552 2 2

2

5 66 12 6 55

,

, .2

L D D I KA
x y t

L D D L KA A
x y x



 

  
   

  

 
  

  

 

   

3 3
* * * *
7 16 62 262 3

3 3
* * * *
8 26 61 162 3

,

.3

L B B B
x y x

L B B B A
x y y

   
  

 
  

  

 

* * * * * * * *
2 6 3 5 8 2 1 7

9 10* * * * * * * *
2 4 1 5 2 4 1 5

* * * * * * * *
*3 4 5 6 4 7 5 8

11 12* * * * * * * *
2 4 1 5 2 4 1 5

, ,

, .4

L L L L L L L L
L L

L L L L L L L L

L L L L L L L LL L A
L L L L L L L L

 



 
 

 

 
 

 

 9 10 11 12, .5x yL w L L w L A         

For the symmetric plate Bij
* = 0.  

 




