Document Type: Research Paper


1 Department of Mathematics, Landmark University, Omu-aran

2 Department of Mathematics, Landmark University, Omu-aran

3 Department of Mathematics, University of Lagos, Akoka


In this research, the transient analysis of radiative combustible viscous chemical reactive two-step exothermic fluid flow past a permeable medium with various kinetics i.e Bimolecular, Arrhenius and Sensitized are investigated. The hydromagnetic liquid is influenced by a periodic vicissitudes in the axial pressure gradient and time along the channel axis in the occurrence of walls asymmetric convective cooling. The convectional heat transport at the wall surfaces with the neighboring space takes after the cooling law. The
non-dimensional principal flow equations are computationally solved by applying convergent and absolutely stable semi-implicit finite difference techniques. The influences of the fluid terms associated with the momentum and energy equations are graphically presented and discussed quantitatively. The results show that the reaction parameter (𝜆) is very sensitive and it is therefore needs to be carefully monitor to avoid systems blow up. Also, a rise in the values of the second step term enhances the combustion rate and thereby reduces the release of unburned hydrocarbon that polluted the environment.

Graphical Abstract


Main Subjects

[1] A. Aziz, “Entropy generation in pressure gradient assisted Couette flow with different thermal boundary conditions”, Entropy, Vol. 8, No. 2, pp. 50-62, (2006).

[2] G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge Mathematical Library. Cambridge University Press, Cambridge, Mass, USA, (1999).


[3] M. G. Reddy, M. V. V. N. L. Sudha Rani, K. G. Kumar, and B.C. Prasannakumara, “Cattaneo-Christov heat flux and non-uniform heat source/sink impacts on radiative Oldroyd-B two-phase flow across a cone/wedge”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 40; 95, (2018). 


[4] S.O. Salawu, and S.A. Amoo, “Effects of variable viscosity and thermal conductivity on dissipative heat and mass transfer of MHD flow in a porous medium”, Advance in multidispl. & Scientific Research (AIMS), Vol. 2, pp. 11-22, (2016). 


[5] M.S. Dada, and S.O. Salawu, “Analysis of heat and mass transfer of an inclined magnetic field pressure-driven flow past a permeable plate”, Applications and Applied Mathematics: An International Journal, Vol.  12, pp.189-200, (2017). 


[6] R.A. Kareem, and S.O.Salawu, “Variable viscosity and thermal conductivity effect of soret and dufour on inclined magnetic field in non-Darcy permeable medium with dissipation”, British Journal of Mathematics & Computer Science, Vol. 22, pp.1-12, (2017).


[7] M. Malik, and D.V. Singh, “Analysis of finite magnetohydrodynamic”, journal bearings, Wear, Vol. 64, pp.273-280, (1980).


[8] K.D. Singh, “Exact solution of MHD mixed convection periodic flow in a rotating vertical channel with heat radiation”, Int. Journal of Applied Mechanics and Engineering, Vol. 18, No.3, pp.853-869, (2013). 


[9] M.F. Dimian, and A.H. Essawy, “Magnetic field effects on mixed convection between rotating coaxial disk”, J. ngineering
Physics and thermophysics, Vol. 739, No.5, pp. 1082-1091, (1999).


[10] S.O. Salawu, and E.O. Fatunmbi, “Dissipative heat transfer of micropolar hydromagnetic variable electric conductivity
fluid past inclined plate with joule heating and non-uniform heat generation”, Asian Journal of Physical and Chemical Sciences, Vol. 2, pp.1-10, (2017). 


[11] D.S. Chauhan, and P. Rastogi, “Radiation effects on natural convection MHD flow in a rotating vertical porous channel partially filled with a porous medium”, Applied Mathematical Sciences, Vol. 4, No. 13, pp. 643-655, (2010). 


[12] I.J. Uwanta, M. Sani, and M.O. Ibrahim, “MHD convection slip fluid flow with radiation and heat deposition in a hannel in a porous medium”, International Journal of Computer Applications, Vol. 36, No. 2, pp.41-48, (2011). 


[13] T. Hayat, M. Awais, A. Alsaedi, and A. Safdar, “On computations for thermal radiation in MHD channel flow with heat
and mass transfer”, Plos one, Vol. 9, No. 1, pp.1-5, (2014).


[14] O.D. Makinde, “Thermal stability of a reactive viscous flow through a porous saturated channel with convective boundary conditions”, Applied Thermal Engineering, Vol. 29, pp.1773-1777, (2009). 


[15] O.D. Makinde, “Exothermic explosions in a slab: A case study of series summation technique, International and Mass Transfer, Vol. 31, No. 8, pp.1227-1231, (2004). 


[16] S.O. Salawu, and S.I. Oke, “Inherent irreversibility of exothermic chemical reactive third grade poiseuille flow of a
variable viscosity with convective cooling”, J. Appl. Comput. Mech., Vol. 4, No. 3, pp.167-174, (2018). 


[17] O. D. Makinde, “Thermal criticality for a reactive gravity driven thin film flow of a third grade fluid with adiabatic free surface down an inclined plane “, Applied Mathematics and Mechanics, Vol. 30, No. 3, pp.373-380 , (2009).


[18] M. G. Reddy, “Heat and mass transfer on magnetohydrodynamic peristaltic flow in porous media with partial slip”, Alexandria Engineering Journal, Vol. 55, pp. 1225-1234, (2016).


[19] A. J. Chamkha, “Unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving
plate with heat absorption”, Int J Eng. Sci,Vol. 42, pp.217-230 , (2004). 


[20] M.G. Reddy, and O.D. Makinde, “MHD peristaltic transport of Jeffrey nanofluid in an asymmetric channel, Journal of Molecular Liquids”, Vol. 223, pp. 1242-1248, (2016).


[21] S.O. Adesanya, J.A. Falade, S. Jangili, and O. Anwar Be´ g, “Irreversibility analysis for reactive third-grade fluid flow and heat transfer with convective wall cooling, Alexandria Engineering Journal, Vol. 56, pp. 153-160, (2017).


[22] E. Balakrishnan, A. Swift, and G.C. Wake, “Critical values for some non-class A geometries in thermal ignition theory”. Math. Comput. Modell., Vol 24, pp. l-10, (1996). 


[23] J. Bebernes, and D. Eberly, Mathematical problems from combustion theory. Springer Verlag, New York, (1989). 


[24] D.A. Frank-Kamenettskii, Diffusion and heat transfer in chemical kinetics. Plenum press, New York, (1969). 


[25] A. R. Hassan1, and R. Maritz, “The analysis of a reactive hydromagnetic internal heat generating poiseuille fluid flow through a channel”, Springer Plus, Vol. 5, pp. 2-14, (2016).


[26] Z.G. Szabo, Advances in kinetics of homogeneous gas reactions. Methusen and Co Ltd, Great Britain, (1964).


[27] O.D. Makinde, P.O. Olanrewaju, E.O. Titiloye, and A.W. Ogunsola, ”On thermal stability of a two-step exothermic chemical reaction in a slab”, Journal of Mathematical sciences, Vol. 13, pp.1-15, (2013).

[28] R.A. Kareem, and J.A. Gbadeyan, “Unsteady radiative hydromagnetic internal heat generation fluid flow through a porous channel of a two-step exothermic chemical reaction”, Journal of Nig. Ass. of Math. Physics, Vol. 34, pp.111-124, (2016).


[29] S.O Salawu, N.K. Oladejo and M.S. Dada, “Analysis of unsteady viscous dissipative poiseuille fluid flow of two-step
exothermic chemical reaction through a porous channel with convective cooling. Ain Sham Journal of Engineering. (2019). 


[30] S.O. Salawu, and A.M. okedoye, “Thermodynamic second law analysis of hydromagnetic gravity-driven two-step
exothermic chemical reactive flow with heat absorption along a Channel”, Iranian Journal of Energy and Environment Vol. 9, No. 2, pp.114-120, (2018). 


[31] O.D. Makinde, and T. Chinyoka, “Numerical study of unsteady hydromagnetic generalized couette flow of a reactive third-grade fluid with asymmetric convective cooling”, Computer and Mathematics with Applications, Vol. 61, pp.1167-1179, (2011).