Document Type: Research Paper

Authors

1 Mechanical Engineering Department, NIT Kurukshetra, India

2 Professor, Mechanical Engineering Department, NIT Kurukshetra, India

3 Mechanical Engineering Deparrment, UIET, MDU, Rohtak, India

Abstract

With the increased diversity of the customer demand and complexity of the product Inconel 825 is widely used to meet the actual needs especially in aerospace industry. It is difficult-to-cut material because of its high toughness and hardness. The present research attempts to optimize the process parameters of wire electric discharge machining (WEDM) during cutting operation of Inconel 825. WEDM characteristics such as pulse-on time (Ton), pulse-off time (Toff), spark gap voltage (SV), peak current (IP),wire tension (WT), wire feed (WF) are taken into consideration. Performance was measured in terms of material removal rate (MRR), surface roughness (SR) and wire wear ratio (WWR). Central composite design (CCD) of response surface methodology (RSM) at α value of ± 2 was employed to establish the mathematical model between process parameters and performance measures. Multi-objective particle swarm optimization (MOPSO) algorithm has been used to find the Pareto optimal solutions. It uses the concept of dominance to find the non dominated set in the entire population and crowding distance approach to find best Pareto optimal solutions with a good diversity of objectives. The confirmation experiments of MOPSO algorithm shows the significant improvement in MRR (27.934 to 31.687 mm2/min), SR (2.689 to 2.448μm) and WWR (0.027 to 0.030). SEM micrograph studies showed the number of cracks, pockmarks, craters, and pulled out material on the workpiece and wire electrode surface. Energy Dispersive X-ray analysis is performed to investigate the presence of elements on the work surface other than base material.

Graphical Abstract

Keywords

Main Subjects

 1.       R.K. Palakudtewar, S.V. Gaikwad, “Dry Machining of Superalloys: Difficulties and Remedies”, International Journal of Science and Research, Vol. 3, pp. 277-282, (2014).

 

2.       G. Rajyalakshmi, P. Venkata Ramaiah, “Multiple process parameter optimization of wire electrical discharge machining on Inconel 825 using Taguchi grey relational analysis”, International Journal of Advance Manufacturing Technology, Vol. 69, pp. 1249-1262, (2013).

 

3.       G.R.Thellaputta, P.S. Chandra, C.S.P. Rao, “Machinability of Nickel Based Superalloys: A Review”, Materials today: Proceedings”, Vol. 4, pp. 3712-3721, (2017).

 

4.       E. Akca, A. Gursel, “A review on Superalloys and IN718 Nickel-Based Inconel Superalloy”, Periodicals of Engineering Natural Science, Vol. 3, pp. 15-27, (2013).

 

5.       M. Kumar, H. Singh, “Multi response optimization in wire electrical discharge machining of Inconel X-750 using Taguchi’s technique and grey relational analysis”, Cogent Engineering, Vol. 3, pp. 1266123, (2016).

 

6.       A. Goswami, J. Kumar, “Investigation of surface integrity, material removal rate and wire wear ratio for WEDM of Nimonic 80A alloy using GRA and Taguchi method”, International Journal of Engineering Science and Technology, Vol. 17, pp. 173-184, (2014).

 

7.       A. Thakur, A. Mohanty, S. Gangopadhyay, K.P. Maity, “Tool wear and chip characteristics during dry turning of Inconel 825”,  Procedia Material Science, Vol. 5, pp. 2169-2177, (2014).

 

8.       G. Rajyalakshmi, P. Venkata Ramaiah, “A parametric optimization using Taguchi method: effect of WEDM parameters on surface roughness machining on Inconel 825”, Elixir Mechanical Engineering, Vol. 43, pp. 6669-6674, (2012).

 

9.       V. Aggarwal, S.S. Khangura, R.K. Garg, “Parametric modeling and optimization for wire electrical discharge machining of Inconel 718 using response surface methodology”, International Journal of Advance Manufacturing Technology, Vol. 79, pp. 31-47, (2015).

 

10.   U. Çaydas, M. Ay, “WEDM cutting of Inconel 718 nickel-based superalloy: effects of cutting parameters on the cutting quality”, Material Technology, Vol. 1, pp. 117–125, (2016).

 

11.   A. Goyal, “Investigation of material removal rate and surface roughness during wire electrical discharge machining (WEDM) of Inconel 625 super alloy by cryogenic treated tool electrode”, Journal of King Saud University – Science, Vol. 29, pp. 528-535, (2017).

 

12.   G. Talla, S. Gangopadhyay, “Effect of impregnated powder materials on surface integrity aspects of Inconel 625 during electrical discharge machining”, Proc IMechE Part B: Journal of Engineering Manufacture, DOI: 10.1177/0954405416666904, (2016).

 

13.   S. Kumar, A.K. Dhingra, S. Kumar, “Parametric optimization of powder mixed electrical discharge machining for nickel based superalloy inconel-800 using response surface methodology”, Mechanics of AdvancedMaterials and Modern Processes, Vol. 3, pp. 1-17, (2017).

 

14.   S. Bharti, S. Maheshwari, C. Sharma, “Multi-objective optimization of electric-discharge machining process using controlled elitist NSGA-II”, Journal of Mechanical Science and Technology, Vol. 26, pp. 1875-1883, (2012)

 

15.   P. Saha, D. Tarafdar, K.S. Pal, P. Saha, K.A. Srivastava, K. Das, “Multi-objective optimization in wire-electro-discharge machining of TiC reinforced composite through Neuro-Genetic technique”, Applied Soft Computing, Vol. 13, pp. 2065–2074, (2013).

 

16.    S.A. Sonawane, M.L. Kulkarni, “Optimization of machining parameters of WEDM for       Nimonic-75 alloy using principal component analysis integrated with Taguchi method”, Journal of King Saud University– Engineering Science, https://doi.org/10.1016/j.jksues.2018.04.001, (2018).

 

17.   K. Ishfaq, N.A. Mufti,  M.P. Mughal, et al. “Investigation of wire electric discharge machining of stainless-clad steel for optimization of cutting speed”, International Journal of Advance Manufacturing Technology, Vol. 96, pp. 1429. https://doi.org/10.1007/s00170-018-1630-9, (2018).

 

18.   J. Kennedy, R. Eberhart, “Particle swarm optimization”, IEEE International Conference on Neural Networks, pp. 1942–1948, (1995).

 

19.   N. Baskar, P. Asokan, G. Prabhaharan, R. Saravanan, “Optimization of Machining Parameters for Milling Operations Using Non-conventional Methods”, International Journal of Advance Manufacturing Technology, Vol. 25, pp. 1078-1088, (2005).

 

20.   A. Majumder, P.K. Das, A. Majumder, M. Debnath, “An approach to optimize the EDM process parameters using desirability-based multi-objective PSO”, Production and Manufacturing Research, Vol. 2, pp. 228-240, (2014).

 

21.   G. Rajyalakshmi, “Modeling and Multi-Objective Optimization of WEDM of Commercially Monel Super Alloy considering Multiple Users Preferences”, Journal of Pharmaceutical Sciences and Research, Vol.  8, pp. 902-908, (2016).

 

22.   P. Sharma, D. Chakradhar, S. Narendranath, “Modeling and Optimization of WEDM performance attributes of Inconel 706 superalloy using RSM-based PSO approach”, The Ninth International Conference on Material Technologies and Modeling MMT-2016, At Ariel University, Israel, Vol. 1, pp. 181-194, (2016) Conference Proceedings ISBN: 978-965-7632-08-6.

 

23.   R. Chalisgaonkar, J. Kumar, “Multi-response optimization and modeling of trim cut WEDM operation of commercially pure titanium (CPTi) considering multiple user's preferences”, Engineering Science and Technology, an International Journal, vol.18, pp. 125-134, (2015).

 

24.   M. Kumar, H. Singh, “Optimization of process parameters of wire EDM for material removal rate using Taguchi technique”, Indian Journal of Engineering and Material Sciences, vol. 23, pp. 223-230, (2016).

 

25.   D.P. Raykundaliya, A. Shanubhogue, “Comparison Study: Taguchi Methodology vis.-a-vis. Response Surface Methodology through a case study of accelerated failure in Spin-on-Filter”, International Advanced ResearchJournal in Science, Engineering and Technology. Vol. 2, pp. 1-5, (2015).

 

26.   T.Sultan, A. Kumar, R.D. Gupta, “Material removal rate, electrode wear rate, and surface roughness evaluation in die sinking EDM with hollow tool through response surface methodology”, International Journal of Manufacturing Engineering, Vol. 2014, pp. 259129, (2014).

 

27.   Skandesh B.L, K.M Mathew, R Oyyaravelu, P Kuppan, “Effect of Process Parameters on Material Removal Rate in µ-EDM of Magnesium Nano-Composite”, International Research Journal of Engineering and Technology, Vol. 3, (2016).

 

28.   A. Giridharan, G.L. Samuel, “Analysis on the effect of discharge energy on machining characteristics of wire electrical discharge turning process”, Journal of Engineering Manufacture, Vol. 230, pp. 2064-2081, (2016).

 

29.   J. Singh, R. Singh, R. Kumar, “Review on Effects of Process Parameters in Wire Cut EDM and Wire Electrode Development”, International journal of Innovative Research in Science, Engineering and Technology, Vol. 2, pp. 701-706, (2016).

 

30.   R. Bobbili, V. Madhu, A.K. Gogia, “An experimental investigation of wire electrical discharge machining of hot-pressed boron carbide”, Defense Technology, Vol. 11, pp. 344-349, (2015).

 

31.   S.V. Arikatla, M.K. Tamil, K. Arkanti, “Influence of Wire Feed Rate and Wire Tension in Wire Electrical Discharge Machining of Titanium Alloy” Internationaljournal of Innovative Research in Science, Engineering and Technology, Vol. 5, pp. 274-281, (2016).

 

32.   Y. Shen, Y. Liu, H. Dong, K. Zhang, L. Lv, X. Zhang, X. Wu, C. Zheng, R. Ji, “Surface integrity of Inconel 718 in high-speed electrical discharge machining milling using air dielectric”, International Journal of Advance Manufacturing Technology, Vol. 90, 691-698, (2017).

 

33.   F.L. Amorim, W.L. Weingarten, “Die-sinking electrical discharge machining of a high-strength copper-based alloy for injection molds”, Journal of Brazilian Society Mechanical Science and Engineering, Vol. 26, pp. 137–144, (2004).

 

34.   A. Kumar, V. Kumar, J. Kumar, “Surface crack density and recast layer thickness analysis in WEDM process through response surface methodology”, Machining Science and Technology, Vol. 20, pp. 201-230, (2016).1.       R.K. Palakudtewar, S.V. Gaikwad, “Dry Machining of Superalloys: Difficulties and Remedies”, International Journal of Science and Research, Vol. 3, pp. 277-282, (2014).

https://www.ijsr.net/archive/v3i7/MDIwMTQ5ODA=.pdf

2.       G. Rajyalakshmi, P. Venkata Ramaiah, “Multiple process parameter optimization of wire electrical discharge machining on Inconel 825 using Taguchi grey relational analysis”, International Journal of Advance Manufacturing Technology, Vol. 69, pp. 1249-1262, (2013).

https://link.springer.com/article/10.1007/s00170-013-5081-z

3.       G.R.Thellaputta, P.S. Chandra, C.S.P. Rao, “Machinability of Nickel Based Superalloys: A Review”, Materials today: Proceedings”, Vol. 4, pp. 3712-3721, (2017).

https://www.sciencedirect.com/science/article/pii/S2214785317304765

4.       E. Akca, A. Gursel, “A review on Superalloys and IN718 Nickel-Based Inconel Superalloy”, Periodicals of Engineering Natural Science, Vol. 3, pp. 15-27, (2013).

http://pen.ius.edu.ba/index.php/pen/article/viewFile/43/47

5.       M. Kumar, H. Singh, “Multi response optimization in wire electrical discharge machining of Inconel X-750 using Taguchi’s technique and grey relational analysis”, Cogent Engineering, Vol. 3, pp. 1266123, (2016).

https://www.tandfonline.com/doi/abs/10.1080/23311916.2016.1266123

6.       A. Goswami, J. Kumar, “Investigation of surface integrity, material removal rate and wire wear ratio for WEDM of Nimonic 80A alloy using GRA and Taguchi method”, International Journal of Engineering Science and Technology, Vol. 17, pp. 173-184, (2014).

https://www.sciencedirect.com/science/article/pii/S2215098614000366

7.       A. Thakur, A. Mohanty, S. Gangopadhyay, K.P. Maity, “Tool wear and chip characteristics during dry turning of Inconel 825”,  Procedia Material Science, Vol. 5, pp. 2169-2177, (2014).

https://reader.elsevier.com/reader/sd/pii/S2211812814007871?token=8429AD49FB4DC005ECB36AA2FB35D524F961B05A966765942393E62A13885896D95B8596F38E83565C96BFA6C3B714AF

8.       G. Rajyalakshmi, P. Venkata Ramaiah, “A parametric optimization using Taguchi method: effect of WEDM parameters on surface roughness machining on Inconel 825”, Elixir Mechanical Engineering, Vol. 43, pp. 6669-6674, (2012).

https://www.elixirpublishers.com/articles/1350300222_43%20(2012)%206669-6674.pdf

9.       V. Aggarwal, S.S. Khangura, R.K. Garg, “Parametric modeling and optimization for wire electrical discharge machining of Inconel 718 using response surface methodology”, International Journal of Advance Manufacturing Technology, Vol. 79, pp. 31-47, (2015).

https://link.springer.com/article/10.1007/s00170-015-6797-8

10.   U. Çaydas, M. Ay, “WEDM cutting of Inconel 718 nickel-based superalloy: effects of cutting parameters on the cutting quality”, Material Technology, Vol. 1, pp. 117–125, (2016).

http://mit.imt.si/Revija/izvodi/mit161/caydas.pdf

11.   A. Goyal, “Investigation of material removal rate and surface roughness during wire electrical discharge machining (WEDM) of Inconel 625 super alloy by cryogenic treated tool electrode”, Journal of King Saud University – Science, Vol. 29, pp. 528-535, (2017).

https://reader.elsevier.com/reader/sd/pii/S1018364717303336?token=73AB3AADA392FC647F355B75FEE45EE966BD3669FF1532C9208CB4717022A42798F4C530620A324F0F597041CF7D5114

12.   G. Talla, S. Gangopadhyay, “Effect of impregnated powder materials on surface integrity aspects of Inconel 625 during electrical discharge machining”, Proc IMechE Part B: Journal of Engineering Manufacture, DOI: 10.1177/0954405416666904, (2016).

https://journals.sagepub.com/doi/abs/10.1177/0954405416666904?journalCode=pibb

13.   S. Kumar, A.K. Dhingra, S. Kumar, “Parametric optimization of powder mixed electrical discharge machining for nickel based superalloy inconel-800 using response surface methodology”, Mechanics of AdvancedMaterials and Modern Processes, Vol. 3, pp. 1-17, (2017).

https://mammp-journal.springeropen.com/track/pdf/10.1186/s40759-017-0022-4

14.   S. Bharti, S. Maheshwari, C. Sharma, “Multi-objective optimization of electric-discharge machining process using controlled elitist NSGA-II”, Journal of Mechanical Science and Technology, Vol. 26, pp. 1875-1883, (2012).

https://link.springer.com/article/10.1007/s12206-012-0411-x

15.   P. Saha, D. Tarafdar, K.S. Pal, P. Saha, K.A. Srivastava, K. Das, “Multi-objective optimization in wire-electro-discharge machining of TiC reinforced composite through Neuro-Genetic technique”, Applied Soft Computing, Vol. 13, pp. 2065–2074, (2013).

https://pdf.sciencedirectassets.com/272229/1-s2.0-S1568494613X00031/1-s2.0-S1568494612004929/main.pdf

16.    S.A. Sonawane, M.L. Kulkarni, “Optimization of machining parameters of WEDM for       Nimonic-75 alloy using principal component analysis integrated with Taguchi method”, Journal of King Saud University– Engineering Science, https://doi.org/10.1016/j.jksues.2018.04.001, (2018).

https://reader.elsevier.com/reader/sd/pii/S1018363918300394

17.   K. Ishfaq, N.A. Mufti,  M.P. Mughal, et al. “Investigation of wire electric discharge machining of stainless-clad steel for optimization of cutting speed”, International Journal of Advance Manufacturing Technology, Vol. 96, pp. 1429. https://doi.org/10.1007/s00170-018-1630-9, (2018).

https://link.springer.com/article/10.1007/s00170-018-1630-9

18.   J. Kennedy, R. Eberhart, “Particle swarm optimization”, IEEE International Conference on Neural Networks, pp. 1942–1948, (1995).

https://ieeexplore.ieee.org/document/488968

 

19.   N. Baskar, P. Asokan, G. Prabhaharan, R. Saravanan, “Optimization of Machining Parameters for Milling Operations Using Non-conventional Methods”, International Journal of Advance Manufacturing Technology, Vol. 25, pp. 1078-1088, (2005).

https://link.springer.com/article/10.1007/s00170-003-1939-9

20.   A. Majumder, P.K. Das, A. Majumder, M. Debnath, “An approach to optimize the EDM process parameters using desirability-based multi-objective PSO”, Production and Manufacturing Research, Vol. 2, pp. 228-240, (2014).

https://www.tandfonline.com/doi/full/10.1080/21693277.2014.902341

21.   G. Rajyalakshmi, “Modeling and Multi-Objective Optimization of WEDM of Commercially Monel Super Alloy considering Multiple Users Preferences”, Journal of Pharmaceutical Sciences and Research, Vol.  8, pp. 902-908, (2016).

https://www.jpsr.pharmainfo.in/Documents/Volumes/vol8Issue08/jpsr08081649.pdf

22.   P. Sharma, D. Chakradhar, S. Narendranath, “Modeling and Optimization of WEDM performance attributes of Inconel 706 superalloy using RSM-based PSO approach”, The Ninth International Conference on Material Technologies and Modeling MMT-2016, At Ariel University, Israel, Vol. 1, pp. 181-194, (2016) Conference Proceedings ISBN: 978-965-7632-08-6.

https://www.researchgate.net/publication/312032172_

 

23.   R. Chalisgaonkar, J. Kumar, “Multi-response optimization and modeling of trim cut WEDM operation of commercially pure titanium (CPTi) considering multiple user's preferences”, Engineering Science and Technology, an International Journal, vol.18, pp. 125-134, (2015).

https://reader.elsevier.com/reader/sd/pii/S2215098614000913?token=05484D3297BF996017647A15020E571C9481BD8581F22BEDE4AE72DA4E2519CE00F6E190557E2B2AEBCCFE6A0BAAB99A

24.   M. Kumar, H. Singh, “Optimization of process parameters of wire EDM for material removal rate using Taguchi technique”, Indian Journal of Engineering and Material Sciences, vol. 23, pp. 223-230, (2016).

http://nopr.niscair.res.in/handle/123456789/39813

25.   D.P. Raykundaliya, A. Shanubhogue, “Comparison Study: Taguchi Methodology vis.-a-vis. Response Surface Methodology through a case study of accelerated failure in Spin-on-Filter”, International Advanced ResearchJournal in Science, Engineering and Technology. Vol. 2, pp. 1-5, (2015).

https://iarjset.com/upload/2015/march-15/IARJSET%201.pdf

26.   T.Sultan, A. Kumar, R.D. Gupta, “Material removal rate, electrode wear rate, and surface roughness evaluation in die sinking EDM with hollow tool through response surface methodology”, International Journal of Manufacturing Engineering, Vol. 2014, pp. 259129, (2014).

https://www.hindawi.com/journals/ijme/2014/259129/

27.   Skandesh B.L, K.M Mathew, R Oyyaravelu, P Kuppan, “Effect of Process Parameters on Material Removal Rate in µ-EDM of Magnesium Nano-Composite”, International Research Journal of Engineering and Technology, Vol. 3, (2016).

https://www.irjet.net/archives/V3/i9/IRJET-V3I910.pdf

 

28.   A. Giridharan, G.L. Samuel, “Analysis on the effect of discharge energy on machining characteristics of wire electrical discharge turning process”, Journal of Engineering Manufacture, Vol. 230, pp. 2064-2081, (2016).

https://journals.sagepub.com/doi/abs/10.1177/0954405415615732

 

29.   J. Singh, R. Singh, R. Kumar, “Review on Effects of Process Parameters in Wire Cut EDM and Wire Electrode Development”, International journal of Innovative Research in Science, Engineering and Technology, Vol. 2, pp. 701-706, (2016).

http://www.ijirst.org/articles/IJIRSTV2I11257.pdf

 

30.   R. Bobbili, V. Madhu, A.K. Gogia, “An experimental investigation of wire electrical discharge machining of hot-pressed boron carbide”, Defense Technology, Vol. 11, pp. 344-349, (2015).

https://www.sciencedirect.com/sdfe/pdf/download/read/noindex/pii/S2214914715000483/1-s2.0-S2214914715000483-main.pdf

 

31.   S.V. Arikatla, M.K. Tamil, K. Arkanti, “Influence of Wire Feed Rate and Wire Tension in Wire Electrical Discharge Machining of Titanium Alloy” Internationaljournal of Innovative Research in Science, Engineering and Technology, Vol. 5, pp. 274-281, (2016).

http://www.ijirset.com/upload/2016/january/34_Influence.pdf

32.   Y. Shen, Y. Liu, H. Dong, K. Zhang, L. Lv, X. Zhang, X. Wu, C. Zheng, R. Ji, “Surface integrity of Inconel 718 in high-speed electrical discharge machining milling using air dielectric”, International Journal of Advance Manufacturing Technology, Vol. 90, 691-698, (2017).

https://link.springer.com/article/10.1007/s00170-016-9332-7

33.   F.L. Amorim, W.L. Weingarten, “Die-sinking electrical discharge machining of a high-strength copper-based alloy for injection molds”, Journal of Brazilian Society Mechanical Science and Engineering, Vol. 26, pp. 137–144, (2004).

https://www.semanticscholar.org/paper/Die-Sinking-Electrical-Discharge-Machining-of-a-for-Weingaertner/cd549bc799f297e7c6b08748422428b74b14e8b2

 

34.   A. Kumar, V. Kumar, J. Kumar, “Surface crack density and recast layer thickness analysis in WEDM process through response surface methodology”, Machining Science and Technology, Vol. 20, pp. 201-230, (2016).

https://www.tandfonline.com/doi/abs/10.1080/10910344.2016.1165835

 

CAPTCHA Image