Document Type: Research Paper


1 Sri Venkateswara college of Engineering And Technology(A), Chittoor, Andhra Pradesh, 517127

2 Sri Venkateswara College of Engineering and Technology (Autonomous), Chittoor, AP, India, 517127

3 Department of Mechanical Engineering, University of Aveiro,Portugal


In-situ composites are gained the attention of worldwide researchers in the interest of its greater mechanical properties at the lower reinforcement ratio. Controlling the surface quality of the component is a paramount task in grinding process in order to withstand the creep and fatigue load at service conditions. The current effort is intended to examine the mechanism of surface generation in grinding of AA6061-TiB2/ZrB2 in-situ composites under different reinforcement ratio, grinding parameters and wheel materials. The analysis of results indicates that the grinding of unreinforced alloy is complicated than the composites. Diamond wheel yields superior performance by generating lesser surface roughness and subsurface hardness at all grinding conditions. Among the various grinding parameters, grinding speed and grinding depth are more sensitive than other parameters. This experimental investigation helps to control the surface roughness and subsurface at various grinding conditions. Understanding of surface generation mechanism in grinding of in-situ composites helps to employ the grinding process for economic machining rate without negotiating the surface quality.

Graphical Abstract


Main Subjects

[1] S.Agarwal, and P.V. Rao, “Predictive modelling of undeformed chip thickness in ceramic grinding”, International Journal of Machine Tools and Manufacture, Vol.56, pp.59–68, (2012). 


[2] Z.Amirsardari, M.Salavati-Niasari, R.M.Aghdam, and S.Shakhesi, “Facile carbothermal reduction synthesis of ZrBnanoparticles: The effect of starting precursors”, Materials and Manufacturing Processes, Vol. 31,.pp. 134-140, (2016). 


[3] P.S.Bains, S.S. Sidhu, and H.S.Payal, Study of magnetic field assisted ED machining of metal matrix composites”, Materials and Manufacturing Processes, Vol. 31, pp.1889-1894,(2016). 


[4] E.Brinksmeier, J.C Aurich, E. Govekar, C. Heinzel1, H.W. Hoffmeister, F. Klocke, J.  Peters, R.Rentsch, D.J Stephenson, E.Uhlmann, K. Weinert, and M.Wittmann, “Advances in modeling and simulation of grinding processes”, Annals of the CIRP, Vol. 55 No.2, pp 667-696, (2006). 


[5] C.F.Cheung, K.C.Chan, S.To, and W.B Lee, “Effect of reinforcement in ultra- precision machining of  AA6061/ SiC metal matrix composites”, Scripta. Materialia, Vol. 47, pp. 77-82, (2002). 


[6] P.Chockalingam, K. Kok,  and R.Vijayaram, “Effect of coolant on cutting forces and surface roughness in grinding of CSM GFRP”, International Journal of Industrial and Manufacturing Engineering, Vol. 6, pp.1478-1483, (2012).


[7] Y.Deng, X. Shi, Xiu  and M. Liu, “Study on the surface micro-topography in pre-stressed dry grinding process”, International Journal of Abrasive Technology, Vol. 8 No. 2, 83-96, (2017). 


[8] S.P.Dwivedi, S. Sharma,  and R.K. Mishra, “Characterization of waste eggshells and CaCO3 reinforced AA2014 green metal matrix composites: A green approach in the synthesis of composites”, International Journal of Precision Engineering and Manufacturing, Vol. 17, No. 10, pp. 1383-1393, (2016). 


  [9] R.Ferreira, D. Carou, C.H. Lauro, and J.P. Davim,  “Surface roughness investigation in the hard turning of steel using ceramic tools”, Materials and Manufacturing Processes, Vol. 31, pp. 648–665, (2016). 


[10] Q.Gao, B. Yang, H. Mei, and H. Wu,  “Microstructure and wear resistance of semisolid TiB2/7050 composites produced by serpentine tube pouring technique”, Materials and Manufacturing Processes, Vol.31, pp. 1029-1894, (2016). 


[11] E.Heinzel, and N. Bleil,  “Using the size effect of specific energy in grinding for work hardening”, International Journal of Manufacturing Technology and Management, Vol. 12, Nos.1/2/3, pp 259-269, (2007). 


[12] S.Huang, and X.Yu,  “A study of grinding forces of SiCp/Al composites”, The International Journal of Advanced Manufacturing Technology, Volume 94, Issue 9–12, pp 3633–3639, (2017). 


[13] S.Huang, X. Yu, F. Wang,  and L. Xu,  “A study on chip shape and chip-forming mechanism in grinding of high volume fraction SiC particle reinforced Al-matrix composites”, The International Journal of Advanced Manufacturing Technology, Vol.  80, pp.1927–1932, (2015). 


[14] Q.Huang, L.Guo, and I.D Marinescu, “Study on the abrasion mechanism of ultraviolet cured resin bond diamond wheel”, International Journal of Abrasive Technology, Vol.7, No.4, pp.257 – 269, (2016). 


[15] N.P.Hung, F.Y.C. Boey, K.A. Khor, Y.S. Phu, and H.F Lee,  “Machinability of aluminium alloys reinforced with silicon carbide particulates”, Journal of Materials Processing Technology, Vol. 56, No. 1-4, pp. 966-977, (1996). 


[16] D.A.Ilio, and A.A.Paoletti, “Comparison between conventional abrasives and super abrasives in grinding of SiC-Aluminium composites”, International Journal of Machine Tools and Manufacture, Vol. 40, pp. 173–184, (2000). 


[17] J.Jiang, P. Ge, and J.Hong,  “Study on micro-interacting mechanism modeling in grinding process and ground surface roughness prediction”, The International Journal of Advanced Manufacturing Technology, Vol. 67, No.5–8, pp 1035–1052, (2013). 


[18] M. Kadivar,A. Zahedi, B.Azarhoushang, and P.Krajnik, “Modelling of the micro-grinding process considering the grinding tool topography”, International Journal of Abrasive Technology, Vol.8, No.2, pp.157 – 170, (2017). 


[19] Li, H.N., Yu,T.B.,Wang,Z.X.,  Zhu,L.D. and Wang,W.S. “Detailed modeling of cutting forces in grinding process considering variable stages of grain-work piece micro interactions”, International Journal of Mechanical Sciences,Vol.126,pp.319-339, (2017). 


[20] L.Li, X.T. Wei, G.M. Zheng, L.Y Li, and C.S Dai, “Electroforming of TiBreinforced copper matrix electrode for EDM”, Materials and Manufacturing Processes, Vol. 31, Pp. 776-780, (2016). 


[21] P.Li, T. Jin, Z. Guo, J. Yi, and M. Qu,  “Analysis on the effects of grinding wheel speed on removal behavior of brittle optical materials”, Proceedings of 11th International Manufacturing Science and Engineering Conference ASME (2016).


[22] K.Lin, W. Wang, R. Jiang, R, Y. Xiong,  and G.Son, “Grindability and Surface Integrity of In- Situ TiB2 Particle Reinforced Aluminum Matrix Composites”, The International Journal of Advanced Manufacturing Technology, Vol. 88, pp. 887–898, (2016). 


[23] B.S. Linke, “A review on properties of abrasive grits and grit selection”, International Journal of Abrasive Technology, Vol. 7, No. 1, pp.46–58, (2015). 


[24] B.S. Linke, I. Garretson, F. Torner, and J.Seewig,  “Grinding energy modeling based on friction, plowing, and shearing”, Journal of Manufacturing Science and Engineering ,Vol. 139, No.12, (2017) 


[25] C.Liu,W.Ding,T.Yu, and C.Yang,  “Materials removal mechanism in high-speed grinding of particulate reinforced titanium matrix composites”, Precision Engineering, Vol.51,pp.68-77, (2018). 


[26] A.Mahamani, A. Jayasree, K. Mounika, R.K.Prasad, and N.Sakthivelan, “Evaluation of mechanical properties of AA6061-TiB2/ZrB2 in-situ metal matrix composites fabricated by K2TiF6-KBF4-K2ZrF6 reaction system”, International Journal of Microstructure and Materials Properties, Vol. 10, pp. 185-200, (2015). 


[27] S.Mahata, B. Mandal, J. Mistri, and S. Das, “Effect of fluid concentration using a multi-nozzle on grinding performance”, International Journal of Abrasive Technology, Vol.6, No.4, pp.257 – 268, (2014).


[28] B.Mandal, S.Das,  and S.Banerjee, S. “Appropriate application of pneumatic barrier for improving grinding performance”, International Journal of Abrasive Technology, Vol. 7, No. 1, pp.26–45, (2015). 


[29] J. Myalski,  and A. Posmyk,  “Processing of sliding hybrid composites with aluminium alloy matrix containing solid lubricants”, Materials and Manufacturing Processes, Vol.31, pp. 1324-1332, (2016). 


[30] C.J.Nicholls, B.B. Ian, J. Davies, .and M.N. Islam, “Review of Machining Metal Matrix Composites”, The International Journal of Advanced Manufacturing Technology, Vol. 90, No.9–12, pp 2429–2441, (2017). 


[31] Pal, D., Bangar, A., Sharma, R. and Yadav, A., “Optimization of grinding parameters for minimum surface roughness by taguchi parametric optimization technique”, International Journal of Mechanical and Industrial Engineering, Vol. 1, No. 3, pp. 2231-6477, (2012).


[32] S.M. Pandit, and G.Sathyanarayanan, “A Model for Surface Grinding Based on Abrasive Geometry and Elasticity”, Journal of Engineering for Industry,Vol.104.No.4, (1982). 


[33] B.A.Ronald, , L. Vijayaraghavan,  and  R.Krishnamurthy “Studies on the influence of grinding wheel bond material on the grindability of metal matrix composites”, Material Design, Vol.30,No.3,pp679–686, (2009). 


[34] K.Salonitis,  “On surface grind hardening induced residual stresses”, Procedia CIRP, Vol. 13, pp.264 – 269, (2014). 


[35] D.Setti, B. Kirsch, and J.C. Aurich, “An analytical method for prediction of material deformation behavior in grinding using single grit analogy”, Procedia CIRP, Vol.58, pp.263 – 268, (2017). 


[36] K.Song, M.G. Gang, M. B.G., Jun, and B.K. Min, “Cryogenic machining of PDMS fluidic channel using shrinkage compensation and surface roughness control”, International Journal of Precision Engineering and Manufacturing,Vol. 18, No. 12, pp. 1711-1717, (2017). 


[37] M.K.Surappa, “Aluminium matrix composites: challenges and opportunities”, Sadhana,Vol.28, No. 1, pp. 319–334, (2003).  


[38] C.Thiagarajan, R. Sivaramakrishnan, and S.Somasundaram, (2011) “Cylindrical grinding of SiC particles reinforced aluminum metal matrix composites”, ARPN Journal of Engineering and Applied Sciences, Vol. 6, pp. 1819-6608.


[39] L.Wan, Z. Deng, T. Liu, H. Tang, and W. Liu,  “Experimental investigation of grinding temperature and burn in high speed deep camshaft grinding”, International Journal of Abrasive Technology, Vol.7, No.4, pp.321 – 336, (2016). 


[40] Z.R.Yang, H.X. Huan, C.F. Jiang, W.M. Li, X.R. Liu, and S.Lyu, “Evaluation on Dry Sliding Wear Behavior of (TiB+TiC)/Ti-6Al-4V Matrix Composite”, International Journal of Precision Engineering and Manufacturing, Vol. 18, No. 8, pp. 1139-1146, (2017). 


[41] G.Yin, I.D.Marinescu,  and M.C. Weismiller, “Grinding force performance with different types of grinding fluids based on a semi-empirical force model”, International Journal of Abrasive Technology, Vol.7, No.3, pp.167 – 186, (2016). 


[42] A.Zahedi, and  B.Azarhoushang, “An analytical force and surface roughness model for cylindrical grinding of brittle materials”, International Journal of Abrasive Technology, Vol.8, No.1, pp.6, (2017).