[1] L. J. Crane, “Flow past a stretching plate”, Zeitschrift für Angew. Math. und Phys. ZAMP, Vol. 21, No. 4, pp. 645–647, (1970).
[2] B. Bidin, and R. Nazar, “Numerical solution of the boundary layer flow over an exponentially stretching sheet with thermal radiation”, Eur. J. Sci. Res., Vol. 33, No. 4, pp. 710–717, (2009).
[3] S. Nadeem, S. Zaheer, and T. Fang, “Effects of thermal radiation on the boundary layer flow of a Jeffrey fluid over an exponentially stretching surface”, Numer. Algorithms, Vol. 57, No. 2, pp. 187–205, (2011).
[4] S. Mukhopadhyay and R. S. R. Gorla, “Effects of partial slip on boundary layer flow past a permeable exponential stretching sheet in presence of thermal radiation”, Heat Mass Transf., Vol. 48, No. 10, pp. 1773–1781, (2012).
[5] E. Magyari and B. Keller, “Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface”, J. Phys. D. Appl. Phys., Vol. 32, No. 5, pp. 577–585, (1999).
[6] M. Q. Al-Odat, R. A. Damseh, and T. A. Al-Azab, “Thermal boundary layer on an exponentially stretching continous surface in the presence of magnetic field effect”, Int. J. Appl. Mech. Eng., Vol. 11, No. 2, pp. 289–299, (2006).
[7] D. Pal, “Mixed convection heat transfer in the boundary layers on an exponentially stretching surface with magnetic field”, Appl. Math. Comput., Vol. 217, No. 6, pp. 2356–2369, (2010).
[8] M. Abd El-Aziz, “Viscous dissipation effect on mixed convection flow of a micropolar fluid over an exponentially stretching sheet”, Can. J. Phys., Vol. 87, No. 4, pp. 359–368, (2009).
[9] M. Sajid and T. Hayat, “Influence of thermal radiation on the boundary layer flow due to an exponentially stretching sheet”, Int. Commun. Heat Mass Transf., Vol. 35, No. 3, pp. 347–356, (2008).
[10] R. Cortell, “Combined effect of viscous dissipation and thermal radiation on fluid flows over a non-linearly stretched permeable wall”, Meccanica, Vol. 47, No. 3, pp. 769–781, (2012).
[11] P. H. Veena, S. Abel, K. Rajagopal, and V. K. Pravin, “Heat transfer in a visco-elastic fluid past a stretching sheet with viscous dissipation and internal heat generation”, Zeitschrift fur Angew. Math. und Phys., Vol. 57, No. 3, pp. 447–463, (2006).
[12] S. R. R. Reddy and P. Bala Anki Reddy, “Bio-mathematical analysis for the stagnation point flow over a non-linear stretching surface with the second order velocity slip and titanium alloy nanoparticle”, Front. Heat Mass Transf., Vol. 10, No. 13, pp. 1–11, (2018).
[13] S. Gupta, D. Kumar, and J. Singh, “MHD mixed convective stagnation point flow and heat transfer of an incompressible nanofluid over an inclined stretching sheet with chemical reaction and radiation”, Int. J. Heat Mass Transf., Vol. 118, pp. 378–387, (2018).
[14] A. Saadatmandi and Z. Sanatkar, “Collocation method based on rational Legendre functions for solving the magneto-hydrodynamic flow over a nonlinear stretching sheet”, Appl. Math. Comput., Vol. 323, pp. 193–203, (2018).
[15] P. Kumar, K. Tanmoy, and C. Kalidas, “Framing the Cattaneo – Christov heat flux Phenomena on CNT- based Maxwell Nanofluid along stretching sheet with multiple slips”, Arab. J. Sci. Eng., Vol. 43, No. 3, pp. 1177–1188, (2018).
[16] P. B. A. Reddy and N. B. Reddy, “Thermal radiation effects on hydro-magnetic flow due to an exponentially stretching sheet”, Int. J. Appl. Math. Comput., Vol. 3, No. 4, pp. 300–306, (2011).
[17] M. M. Bhatti, M. A. Abbas, and M. M. Rashidi, “A robust numerical method for solving stagnation point flow over a permeable shrinking sheet under the influence of MHD”, Appl. Math. Comput., Vol. 316, pp. 381–389, (2018).
[19] S. R. R. Reddy, P. Bala Anki Reddy, and S. Suneetha, “Magnetohydrodynamic flow of blood in a permeable inclined stretching surface with viscous dissipation, non-uniform heat source/sink and chemical reaction”, Front. Heat Mass Transf., Vol. 10, No. 22, pp. 1–10, (2018).
[20] K. Vajravelu, K. V. Prasad, and C. O. Ng, “Unsteady convective boundary layer flow of a viscous fluid at a vertical surface with variable fluid properties”, Nonlinear Anal. Real World Appl., Vol. 14, No. 1, pp. 455–464, (2013).
[21] P. B. A. Reddy and N. B. Reddy, “Finite difference analysis of radiation effects on unsteady MHD flow of a chemically reacting fluid with time-dependent suction”, Int. J. Appl. Math Mech., Vol. 7, No. 9, pp. 96–105, (2011).
[22] A. J. Chamkha, A. M. Aly, and M. A. Mansour, “Similarity solution for unsteady heat and mass transfer from a stretching surface embedded in a porous medium with suction / injection and chemical reaction effects”, Chem. Eng. Commun., Vol. 197, No. 6, pp. 846–858, (2010).
[23] D. Pal and N. Roy, “Lie group transformation on MHD double-diffusion convection of a Casson nanofluid over a vertical stretching / shrinking surface with thermal radiation”, Int. J. Appl. Comput. Math., Vol. 13, No. 4, pp. 1–23, (2018).
[24] N. Bachok, A. Ishak, and I. Pop, “Unsteady boundary-layer flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet”, Int. J. Heat Mass Transf., Vol. 55, No. 7–8, pp. 2102–2109, (2012).
[25] D. Pal, “Combined effects of non-uniform heat source/sink and thermal radiation on heat transfer over an unsteady stretching permeable surface”, Commun. Nonlinear Sci. Numer. Simul., Vol. 16, No. 4, pp. 1890–1904, (2011).
[26] J. C. Misra and A. Sinha, “Effect of thermal radiation on MHD flow of blood and heat transfer in a permeable capillary in stretching motion”, Heat Mass Transf., Vol. 49, No. 5, pp. 617–628, (2013).
[27] S. Srinivas, P. B. A. Reddy, and B. S. R. V. Prasad, “Non-Darcian unsteady flow of a micropolar fluid over a porous stretching sheet with thermal radiation and chemical reaction”, Heat Transf. Res., Vol. 44, No. 2, pp. 172–187, (2015).
[28] Yan Zhang, Min Zhang, and Shujuan Qi, “Heat and mass transfer in a thin liquid film over an unsteady stretching surface in the presence of thermo solutal capillarity and variable magnetic field”, Mathematical Problems in Engineering, Vol. 2016, pp. 8521580, (2016).
[29] M. Hatami, Kh. Hosseinzadeh, G. Domairry, M. T. Behnamfar, “Numerical study of MHD two-phase Couette flow analysis for fluid-particle suspension between moving parallel plates”, Journal of the Taiwan Institute of Chemical Engineers, Vol. 45, No. 5, 2238-2245, (2014).
[30] S. S. Ghadikolaei, Kh. Hosseinzadeh, and D. D. Ganji, “Analysis of unsteady MHD Eyring-Powell squeezing flow in stretching channel with considering thermal radiation and Joule heating effect using AGM”, Case Studies in Thermal Engineering, Vol. 10 pp. 579-594, (2017).
[31] K. Das, “Slip ﬂow and convective heat transfer of nanoﬂuids over a permeable stretching surface”, Comput. Fluids Vol. 64, pp. 34-42, (2012).
[32] M. Swati, “Slip effects on MHD boundary layer flow over an exponentially stretching sheet with suction/blowing and thermal radiation”, Ain Shams Engineering J. Vol. 4, pp. 485-491, (2013).
[33] A.J. Chamka, A.M. Aly, and M.A. Mansour, “Similarity solution for unsteady Heat and Mass transfer from a stretching surface embedded in a porous medium with suction/injection and chemical reaction effects”, Chem. Eng. Comm. Vol. 197, pp. 846-858, (2010).
[34] J.C. Misra, and A. Sinha, “Effect of thermal radiation on MHD flow of blood and heat transfer in a permeable capillary in stretching motion”, Heat Mass Transfer, Vol. 49, pp. 617-628, (2013).
Send comment about this article