Document Type: Research Paper


Dept. of Mech. Eng., SRTTU, Lavizan, Tehran, Iran



The centrifugal slurry pump is the most common slurry flow pump used in mining industries. The pump head and efficiency are affected by the size, concentration, and density of solid particle when these pumps are applied for the control of slurries. Because the suspended solids in the liquid could not well absorb, store, and transmit pressure energy, they cause quite different changes in efficiency and performance curve shape. This study was conducted to investigate the variations of the mentioned factors at different flow rates using a numerical simulation of the centrifugal slurry pump. For this purpose, the 3D turbulent flow was solved by applying Reynolds-Averaged Navier-Stokes (RANS) equations using the Shear Stress Transfer (SST) turbulence model based on Eulerian-Eulerian for 45% to 120% flow rates in CFX software. The accuracy of the numerical solution was investigated by comparing the characteristic curves resulting from the numerical solution with experimental data‏. The obtained results show a satisfactory fitting among the calculated values from the numerical analysis and experimental data to predict pressure and velocity distribution and global performance. Moreover, by simulating the effect of different parameters of the slurry flow, their effect on the characteristic curves of the slurry pump was compared. These results reveal that the numerical solution can efficiently predict the variation trend of the slurry flow parameters.

Graphical Abstract


Main Subjects

[1] “Slurry Pump Handbook”, Electronic Version, Warman company,  Fifth Edition, pp. 1-56, (2009). 

[2] B. Shi, J. Wei, “ Numerical Simulation of 3D Solid-Liquid Turbulent Flow in a Low Specific Speed Centrifugal Pump: Performance Comparison of Four Geometric Models”, AIME, Vol. 2014, pp. 1–8, (2014).

[3] B. K. Gandhi, S. N. Singh, V. Seshadri, “Effect of speed on the Performance Characteristics of a centrifugal slurry pump”, J. Fluid Eng.,  Vol.128, No. 2 pp. 225-232, (2002). 

[4] K. V. Pagalthivarthi, P. K. Gupta, V. Tyagi, M. R. Ravi, “CFD Predictions of Dense Slurry Flow in Centrifugal Pump Casings”, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, Vol. 5, No. 3, pp. 538–550, (2011). 

[5] K. V. Pagalthivarthi, P. K. Gupta, V. Tyagi, M. R. Ravi, “CFD Prediction of Erosion Wear in Centrifugal Slurry Pumps for Dilute Slurry Flows”, J. Comput. Multiph. Flows, Vol. 3, No. 4, pp. 225–245, (2011). 

[6]  M. Mehta, J. R. Kadambi, S. Sastry, J. M. Sankovic, M. P. Wernet,      G. Addie, R. Visintainer, “Particle Velocities in the Rotating Impeller of a Slurry Pump”, ASME/JSME Fluids Engineering Conference, San Diego, California, USA, July 30 – August 2, (2007).

 [7] T. Wennberg, A. Sellgren, L. Whitlock, “Predicting the performance of centrifugal pumps handling complex slurries”, International conference on transport and sedimentation of solid particles, June 23-25, (2008). 

[8]  A. Kumar,  D.R. Kaushal,  U. Kumar, Bend “Pressure Drop Experiments compared with Fluent”, Proceedings of The Institution of Civil Engineering and computational Mechanics, Vol. 161, pp. 35-42,  (2008). 

[9]  S. Huang, X. Su, G. Qiu, “Transient numerical simulation for solid-liquid flow in a centrifugal pump by DEM-CFD coupling”, ENG APPL COMP FLUID, Taylor & Francis, pp. 411-418, (2015). 

[10] R. Tarodiya, B. K. Gandhi, “Numerical simulation of a centrifugal slurry pump handling solid-liquid mixture: Effect of solids on flow field and performance”, ADV POWDER TECHNOL, Volume 30, No. 10, pp. 2225-2239, (2019). 

[11] S. Mohanty, O. Parkash, R. Arora, “Analytical and comparative investigations on counter flow heat exchanger using computational fluid dynamics”, JCARME, Accepted Manuscript, (2019). 

[12] M. Blanco Alberto, F. O. J. Manuel, M. Andrés, “Numerical methodology for the CFD simulation of diaphragm volumetric pumps”, INT J MECH SCI, Vol. 150, pp. 322-336, (2019). 

[13] M. Alemi, R. Maia, “A comparative study between two numerical solutions of the Navier-Stokes equations”, JCARME,  Vol. 6, No. 2, , pp. 1-12, (2017). 

[14] B. V. Ratish Kumar, K. B. Naidu, “A streamline up winding stream function-vorticity finite element analysis of Navier-Stokes equations”, APPL NUMER MATH, Vol. 13, No. 4, pp. 335-344, (1993). 

[15]  S. K. Lahiri, Study on slurry flow modelling in pipeline, PhD Thesis, Durgapur University, West Bengal, India. (2010). 

[16] B. Shi, J. Wei, “Numerical Simulation of 3D Solid-Liquid Turbulent Flow in a Low Specific Speed Centrifugal Pump: Flow Field Analysis”, AIME, Vol. 6, pp. 1-11, (2015). 

[17] Menter, F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications”, AIAA Journal, 32 (8): 1598–1605, (1994). 

[18]  Y. Gu, N. Liu, J. Mou, P. Zhou, H. Qian, D. Dai, “Study on solid–liquid two-phase flow characteristics of centrifugal pump impeller with non-smooth surface”, AIME, Vol. 11, No. 5, (2019).  

 [19]  Z. Wang, Z. Qian, “Effects of concentration and size of silt particles on the performance of a double-suction centrifugal pump”, EGY, Vol. 23, pp. 36-46, (2017). 

[20]  Y. Xiao, B. Guo, S. H. Ahn, Y. Lou, Z. Wang,  G. Shi, Y. Li, “Slurry Flow and Erosion Prediction in a Centrifugal Pump after Long-Term Operation”, Energies, Vol. 12, No.8, 1523, (2019). 

[21] K. E. Burgess, S. A. Riezes, “The effect of sizing, specific gravity and concentration on the performance of centrifugal slurry pumps”, P I MECH ENG, Vol. 190, No. 1, pp. 699-711, (1976). 

 [22]  B. M. Bossio, A. J. Blanco, F. H. Hernández, “Eulerian-Eulerian Modeling of Non-Newtonian Slurries Flow in Horizontal Pipes”, ASME 2009 Fluids Engineering Division Summer Meeting, Vail, Colorado, USA, August 2–6, (2009). 

[23] F. R. Menter, “Review of the shear-stress transport turbulence model experience from an industrial perspective”, INT J COMPUT FLUID D, Vol. 23, No. 4, pp. 305–316, (2009). 

 [24]  ANSYS CFX-Solver Theory Guide, ANSYS CFX Release 15.0, (2013). 

 [25] B. Jafarzadeh, A. Hajari, M. M. Alishahi, M. H. Akbari, “The flow simulation of low specific speed high speed centrifugal pump”, Appl. Math. Model, Vol. 35, No. 1, pp. 242-249, (2011). 

  [26] M. Aligoodarz, F. Ehsani Derakhshan, H. Karabi, “Numerical analysis of blade roughness  effects on gas turbine performance and flow field”, Modares Mechanical Engineering, Vol. 13, pp. 112-120, (2014). 

[27] T. Adams, C. Grant, H. Watson, “A Simple Algorithm to Relate Measured Surface Roughness to Equivalent Sand-grain Roughness”, IJMEM, Vol. 1, No. 1, pp. 66–71, (2012). 

[28] M. A. Dehghani, A. F. Najafi, S. A. Nourbakhsh, H. Shokoohmand, “Numerical investigation of fluid flow between the impeller and the casing on disk friction for centrifugal pump”, Modares Mechanical Engineering, Vol. 16, No. 4, pp. 163-174, (2016). 

 [29] M. Asuaje, F. bakir, S. Kouidri, F. Kenyery,R .Rey, “Numerical modelization of the flow in centrifugal pump: volute influence in velocity and pressure fields”, INT J ROTAT MACHIN., Vol. 2005, No. 3, pp. 244–255, (2005). 

[30]  M. Shojaeefard, M. Tahani, M. Ehghaghi, M. Fallahian, M. Beglari, “Numerical study of the effects of some geometric characteristics of a centrifugal pump impeller that pumps a viscous fluid”, Comput Fluids, Vol. 60, pp. 61-70, (2012). 

[31]  J. F. Gülich, Centrifugal Pumps. 3rd Edition Springer, Verlag Berlin Heidelberg, (2014). 

[32]  M. Tan, S. Yuan, H. Liu, Y. Wang, K. Wang, “Numerical research on performance prediction for centrifugal pumps”, CHIN J MECH ENG-EN, No. 1, pp. 21-27, (2010). 

[33] M. Ghaderi, A.F. Najafi, A. Nourbakhsh, “Estimation of a centrifugal pump slip factors at off-design condition using copmutational fluid dynamics”, Modares Mechanical Engineering, Vol. 15, No. 3, pp. 199-207, (2015).