Document Type : Research Paper


Department of Automated Manufacturing Engineering, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad, Iraq,



Surface layer in many engineering applications is strengthened by ceramic grains where the main parts have higher structure toughness of than the original material. This paper presents the effect of four process parameters that have taken into consideration using Taguchi technique based on L9 orthogonal array. These parameters are;1) transverse speed, 2) type of nano-powders, 3) rotational speed, and 4) groove’s depth friction stir welding T-joints aluminum alloy 6061-T6. This work combines between welding T-joint sections and creating MMNCs in welding region simultaneously.The predicted optimum parameters and their percentage of contribution were estimated, utilizing the analysis of variance and signal to noise ratio techniques, depending on tensile test in skin and stringers direction, and hardness test of the joint. Optical microscope and scanning electron microscope (SEM) analysis were used to verify the microstructure and dispersion of nano-powders in welding joint. The best ultimate tensile stress (UTSskin) was equal to (177MPa) for the skin welded part, were obtained at the optimal conditions of 1550rpm rotational speed, 15mm/min transverse speed, Al2O3 type of powder and 1mm groove’s depth. SEM micrographic for metal matrix nanocomposite of all nine experiments revealed that the nano-particles are irregular dispersed in nugget zone due to one pass. The rotational speeds of 960rpm, the transverse speed of 15mm/min, type of powder TiO2, and groove’s depth of 1.5mm, give the greatest hardness value of 80HV in nugget zone. Analysis of variance showed that the groove’s depth is the most significant parameter in this investigation.

Graphical Abstract

Investigation of process parameters for T-joint aluminum alloy 6061-T6 with nanocomposites material friction stir welding based on the Taguchi method


Main Subjects

[1] No. 5,460,317.U.S. Patent “Friction Stir Butt Welding” W. Thomas, E. Nicholas, J. Needham, M. Murch, P. Smith, and C. Dawes, , (1995).

[2] H. Bakes, D. Benjamin, CW. Kirkpatrick. Metal’s Handbook, Vol. 2. ASM, Materials Park: OH, pp. 3–23, (1991).

[3]  N. Ravi, D. Sastikumar, N. Subramanian, A. Nath and V. Masilamani, "Microhardness and microstructure studies on laser surface alloyed aluminum alloy with Ni-Cr", Jour. of Mater. and Manuf. Proc. Vol. 15, No. 3, pp. 395-404, (2000).

[4] S. Amin, M. Hanna and A. Mohamed, “Experimental Study the Effect of Tool Design on the Mechanical Properties of Bobbin Friction Stir Welded 6061-T6 Aluminum Alloy”, AL-Khwarizmi Eng. Jour. Vol. 14, No.3, PP. 1- 11, (2018).

 [5] T. Clyne and P. Withers, An introduction to metal matrix composites.  Cambridge [England] : New York : Cambridge University Press, (1995).

[6] G. Kiourtsidis and S. Skolianos, "Wear behavior of artificially aged AA2024/40 μm SiCp composites in comparison with conventionally wear resistant ferrous materials", Wear, Vol. 253, No. 9-10, pp. 946-956, (2002).

[7] B. Zahmatkesh and M. Enayati, "A novel approach for development of surface nanocomposite by friction stir processing",  Mater. Sci. and Eng. Jour. A, Vol. 527, No. 24-25, pp. 6734-6740, (2010).

[8] F. Khodabakhshi, A. Gerlich, P. Svec, "Fabrication of a high strength ultra-fine grained Al-Mg-SiC nanocomposite by multi-step friction-stir processing", Mater. Sci. and Eng. Jour.: A, vol. 698, pp. 313-325, (2017).

[9] E. Rabinowicz, Friction and wear of materials. New York: JohnWiley and Sons, (1995).

[10] KG. Budinski. Surface engineering for wear resistance. New Jersey: Prentice-Hall; (1988).

[11] G. Zhou, X. Yang, L. Cui, Z. Zhang and X. Xu, "Study on the microstructures and tensile behaviors of friction stir welded T-joints for AA6061-T4 alloys", Jour. of Mater. Eng. And Perfo. Vol. 21, No. 10, pp. 2131-2139, (2012).

[12] F. Mustafa, A. Kadhym and H. Yahya, "Tool geometries optimization for friction stir welding of AA6061-T6 aluminum alloy T-joint using Taguchi method to improve the mechanical behavior", Jour. of Manuf. Sci. and Eng. Vol. 137, No. 3, p. 031018-8 pages, (2015).

[13] S. Tavares, P. Azevedo, B. Emi´lio, V. Richter, M.  Figueiredo, P. Vilac¸a, P. de Castro "Friction stir welding of T-joints in dissimilar aluminum alloys." ASME  Inter. Mech. Eng. Cong. and Expos. 2008, Vol.4, No. 67522, pp. 265-273; 9 pages (2008).

[14] D. Lim, T. Shibayanagi and A. Gerlich, "Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing", Mater. Sci. and Eng. Jour. A, Vol. 507, No. 1-2, pp. 194-199, (2009).

[15] A. Shafiei, S. Kashani, and A. Zarei, "Microstructures and mechanical properties of Al/Al2O3 surface nano-composite layer produced by friction stir processing", Mater. Sci. and Eng. Jour. A, Vol. 500, No. 1-2, pp. 84-91, (2009).

[16] M. Azizieh, A. Kokabi and P. Abachi, "Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing", Mater. and Desi. Jour. Vol. 32, No. 4, pp. 2034-2041, (2011).

[17] E. Mahmoud, M. Takahashi, T. Shibayanagi and K. Ikeuchi, "Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminum plate by friction stir processing", Wear, Vol. 268, No. 9-10, pp. 1111-1121, (2010).

[18] M. Salehi, M. Saadatmand and J. Mohandesi, "Optimization of process parameters for producing AA6061/SiC nanocomposites by friction stir processing", Trans. of Nonfer. Met. Soci. of China, Vol. 22, No. 5, pp. 1055-1063, (2012).

[19] Z. Du, M. Tan, J. Guo, J. Wei, "Friction stir processing of Al–CNT composites", Proc. of the Inst. of Mech. Eng., Part L: Jour. of Mater. Desi. and Appl. Vol. 230, No. 3, pp. 825-833, (2016).

[20] A. Takhakh, H. Abdulla, "Surface modification of AA 7075-T651 plate using friction stir processing with SIC particles", Emirates Jour.  for Eng. Reser. Vol. 22, No. 3, pp.1-11, (2017)

[21] A. Devaraju, A. Kumar, A. Kumaraswamy and B. Kotiveerachari, "Influence of reinforcements (SiC and Al2O3) and rotational speed on wear and mechanical properties of aluminum alloy 6061-T6 based surface hybrid composites produced via friction stir processing", Mater. and Desi. Jour. Vol. 51, pp. 331-341, (2013).

[22] F. Alkaabneh, M. Barghash, Y. Abdullat, "A Novel Statistical Analysis for Residual Stress in Injection Molding", American Jour. of Oper. Reser. Vol.6 No.1,pp. 90-103, (2016).

[23] S. Juang and Y. Tarng, "Process parameter selection for optimizing the weld pool geometry in the tungsten inert gas welding of stainless steel", Jour. of Mater. Proc. Tech. Vol. 122, No. 1, pp. 33-37, (2002).

[24] Sung. H. “Robust Design and Analysis for Quality Engineering, Park Chapman & Hall, London, (1996).

[25] J. Ghani, I. Choudhury and H. Hassan, "Application of Taguchi method in the optimization of end milling parameters", Jour. of Mater. Proc. Tech. Vol. 145, No. 1, pp. 84-92, (2004).

[26] W. Yang and Y. Tarng, "Design optimization of cutting parameters for turning operations based on the Taguchi method", Jour. of Mater. Proc. Tech. Vol. 84, No. 1-3, pp. 122-129, (1998).

[27] Minitab Company, “MINITABTM Statistical Software Release 16,” Minitab Inc., State College, PA, 

[28] M. Shojaeefard, A. Khalkhali, M. Akbari and M. Tahani, "Application of Taguchi optimization technique in determining aluminum to brass friction stir welding parameters", Mater. and Desi. Vol. 52, pp. 587-592, (2013).

[29] J. Guo, J. Liu, C. Sun, S. Maleksaeedi, G. Bi, M. Tan and J. Wei, "Effects of nano-Al2O3 particle addition on grain structure evolution and mechanical behaviour of friction-stir-processed Al", Mater. Sci. and Eng. Jour. A, Vol. 602, pp. 143-149, (2014).

[30] A. Shahi, M. Sohi, D. Ahmadkhaniha and M. Ghambari, "In situ formation of Al–Al3Ni composites on commercially pure aluminium by friction stir processing", Inter. Jour.of Adva.And Manuf. Tech. Vol. 75, No. 9-12, pp. 1331-1337, (2014).

[31] C. Lee, J. Huang and P. Hsieh, "Mg based nano-composites fabricated by friction stir processing", Scripta Mater. Jour. Vol. 54, No. 7, pp. 1415-1420, (2006).