Document Type: Research Paper


1 Department of Mechanical Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

2 Department of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran


Existence of cracks in industrial structures is one of the important causes of their failure, especially when they are subjected to important axial compressive forces that might lead to buckling. Therefore, it must be considered in stress analysis and designing and loading of such structures. In this paper, the buckling and post-buckling behaviors of stainless-steel cracked plates under axial compression load were investigated both experimentally and numerically and effects of the geometrical and mechanical parameters, such as crack length, crack angle, crack position, plate imperfection, load band, and plate thickness on the critical buckling load were studied. In the experimental study, mechanical properties and plastic behavior of stainless steel plates were determined for the subsequent numerical study. Numerical modeling was carried out by ABAQUS finite element software. Numerical predictions were compared with the experimental results and the reliability of the numerical solution was proven. Results demonstrated the considerable effects of the mentioned parameters on the critical buckling load of plate.


Main Subjects