Manufacturing Processes
Sachin G Ghalme; Yogesh Bhalerao; Kamlesh Phapale
Abstract
Composite materials have proven their applicability for various structural components. Glass fiber reinforced plastic (GFRP) composite materials have potential applications in aerospace, automobile related industries due to their excellent properties. Drilling is important operation for composite structures ...
Read More
Composite materials have proven their applicability for various structural components. Glass fiber reinforced plastic (GFRP) composite materials have potential applications in aerospace, automobile related industries due to their excellent properties. Drilling is important operation for composite structures during final assembly. This paper investigates the factors affecting delamination in glass fiber reinforced plastic (GFRP) composite during the drilling process. Drill speed and feed rate are selected two parameters affecting delamination during the drilling process. Response surface methodology (RSM) approach has been used for experimental design and analysis of variance (ANOVA). Delamination evaluated at entry, middle and exit position of the hole. An attempt has been made to optimize speed and feed for minimization of delamination at these three positions using grey relational analysis (GRA). The results of this work will help in selecting an optimum level of speed and feed to minimize delamination at entry, middle, and exit position of the hole improving quality of the drilled hole.
Manufacturing Processes
R. Arokiadass*; K. Palaniradja; N. Alagumoorthi
Abstract
Metal matrix composites have been widely used in industries, especially aerospace industries, due to their excellent engineering properties. However, it is difficult to machine them because of the hardness and abrasive nature of reinforcement elements like silicon carbide particles (SiCp).In the present ...
Read More
Metal matrix composites have been widely used in industries, especially aerospace industries, due to their excellent engineering properties. However, it is difficult to machine them because of the hardness and abrasive nature of reinforcement elements like silicon carbide particles (SiCp).In the present study, an attempt has been made to investigate the influence of spindle speed (N), feed rate (f), depth of cut (d) and various %wt. of silicon carbide (S) manufactured through stir cast route on tool flank wear and surface roughness during end milling of LM25 Al-SiCp metal matrix composites. Statistical models based on second order polynomial equations were developed for the different responses. Analysis of variance (ANOVA) was carried out to identify the significant factors affecting the tool flank wear and surface roughness. The contour plots were generated to study the effect of process parameters as well as their interactions. The process parameters are optimized using desirability-based approach response surface methodology.