Document Type: Research Paper

Authors

Department of Mathematics and Statistics, Manipal University, Rajasthan, India

Abstract

In the current article has been investigated unsteady convective flow for MHD non-Newtonian Powell-Eyring fluid embedded porous medium over inclined permeable stretching sheet. We have pondered the thermophoresis parameter, chemical reaction, variable thermal conductivity, Brownian motion, variable heat source and variable thermal radiation in temperature and concentration profiles. Using similarly transformation the PDEs are converted by couple ODEs and solve by R–K–Fehlberg 4th –5th order method. The physical features of non-dimensional radiation parameter, non-Newtonian fluid parameters, suction /injection parameter, mass Grashof number porosity parameter, temperature ratio parameter, thermal Grashof number, Biot number of temperature and Biot number of concentration have been analyzed by plotting the graphs of graphically representation of momentum, heat and mass profiles. , and have been analyzed. The transfer rate of temperature is decreased whereas the flow rate of fluid is growth with an enhance in (K) and (Gr). The transfer rate of temperature is distinctly boosted whereas the fluid flow rate is distinctly declined with an enhance in (M) , (Kp).

Graphical Abstract

Keywords

Main Subjects

[1].       P. M. Krishna, N. Sandeep, J. V. R. Reddy and V Sugunamma, “Dual solutions for unsteady flow of Powell-Eyring fluid past an inclined stretching sheet”. J. of Naval Arch. and Marine Engg.,  Vol. 13, pp. 89-99 (2016).

                   

[2].       T. Jayed, N. Ali, Z. Abbas and M. Sajid, “Flow of an Powell-Eyring non-Newtonian fluid over a stretching sheet”. Chem. Eng. Comm. Vol. 200, No. 3, pp. 327–336 (2013).

 

[3].       T. Hayat , M. Waqas, S. A. Shehzad and A. Alsaedi, “Mixed Convection Stagnation-Point Flow of Powell-Eyring Fluid with Newtonian Heating”. Thermal Radiation, and Heat Generation/Absorption. , (2016). 

 

[4].       T. Hayat, M. B. Ashraf, S. A. Shehzad and E. Abouelmagd, “Three-dimensional flow of Eyring Powell nanofluid over an exponentially stretching sheet”. Int. J. Numer. Methods Heat Fluid Flow, Vol. 25 No. 3, pp. 593–616 (2015).

 

[5].       T. Hayat, N. Gull, M. Farooq and A. Alsaedi, “Thermal radiation effects in MHD flow of Powell-Eyring nanofluid induced by a stretching cylinder.” J. Aerosp. Eng., Vol. 29, No. 1, pp. 04015011-13, (2016). 

 

[6].       T. Hayat, S. Makhdoom, M. Awais, S. Saleem, M. M. Rashidi, “Axisymmetric Powell-Eyring fluid flow with convective boundary condition: optimal analysis”. Appl. Math. Mech. -Engl. Ed. (2016).

 

[7].       T. Hayat, M. Pakdemirli and T. Aksoy, “Similarity solutions for boundary layer equations of a Powel-Eyring fluid”. Mathematical and Computational Applications, Vol. 18, No. 1, pp. 62-70 (2013).

                   

[8].       S. A. Gaffar, V. R. Prasad and E. K. Reddy “MHD free convection flow of Eyring–Powell fluid from vertical surface in porous media with Hall/ionslip currents and ohmic dissipation”. Alexandria Engineering JournalVol. 55,no. 2, pp 875-905(2016).

                   

[9].       A. Alsaedi, M. B. Ashraf, T. Hayat and S. A. Shehzad, “Mixed convection radiative flow of three-dimensional Maxwell fluid over an inclined stretching sheet in presence of thermophoresis and convective condition”. AIP Adv., Vol. 5, No. 2, pp. 027134-17 (2015).

 

[10].      A. Alsaedi, T. Hayat and M. Imtiaz, “Partial slip effects in flow over nonlinear stretching surface”. Appl. Math. Mech., Vol. 36, No. 11, 1513–1526 (2015).

 

[11].      S. Jain, “Temperature distribution in a viscous fluid flow through a channel bounded by a porous medium and a stretching sheet”. J. Rajasthan Acad. Phy. Sci., Vol. 4, pp. 477-482 (2006).

                 

[12].      J. Zhu, L. Zheng and Z. Zhang, “Effets of slip condition on MHD stagnation-point flow over a power-law stretching sheet”. Appl. Math. Mech. Engl. Ed., Vol. 31,  No. 4, pp. 439–448  (2010).

                 

[13].      S. Jain and A. Parmar, “Comparative study of flow and heat transfer behavior of Newtonian and non-Newtonian fluids over a permeable stretching surface”. Global and stochastic analysis, SI: pp. 41-50 (2017).

                 

[14].      M. Turkyilmazoglu, and I. Pop, “Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffery fluid”. Int. J. Heat Mass Trans., Vol. 57, No. 1, pp. 82–88 (2013).

 

[15].      M. Turkyilmazoglu, “Multiple solutions of heat and mass transfer of MHD slip flow for the viscoelastic fluid over a stretching sheet”. Int. J. Therm. Sci., Vol. 50, No.  11, pp. 2264–2276 (2011).

 

[16].      M. Turkyilmazoglu,  “The analytical solution of mixed convection heat transfer and fluid flow of a MHD viscoelastic fluid over a permeable stretching surface”. Int. J. Mech. Sci., Vol. 77, pp. 263–268 (2013).

                 

[17].      M. M. Rashidi, A. J. Chamkha and M. Keimanesh, “Application of multi-step differential transform method on flow of a second-grade fluid over a stretching or shrinking sheet”. Am. J. Computer Math., Vol. 1, No. 2, pp. 119–128 (2011).  

                 

[18].      S. Mukhopadhyay, “Effects of thermal radiation and variable fluid viscosity on stagnation point flow past a porous stretching sheet”. Meccanica, Vol. 48, No. 7, pp. 1717–1730 (2013). 

                 

[19].      M. Jalil and S. Asghar, “Flow of power-law fluid over a stretching surface: A Lie group analysis”. Int. J. Nonlinear. Mech., Vol. 48, pp. 65–71 (2012).

                 

[20].      T. Hayat, S. A. Shehzad, M. S. Alhuthali and S. Asghar, “MHD three-dimensional flow of Jeffrey fluid with Newtonian heating”. J. Cent. South Univ., Vol. 21, No. 4, pp. 1428–1433 (2014).

                 

[21].      R. C. Chaudhary and P. Jain,  “An exact solution to the unsteady free convection boundary-layer flow past an impulsively started vertical surface with Newtonian heating.” J. Eng. Phys. Theosophy’s., Vol. 80,  No. 5, pp. 954–960 (2007).

                 

[22].      T. Hayat, M. Imtiaz, M. Hussain, S. A. Shehzad, G. Q. Chen and B. Ahmad, “Mixed convection flow of nanofluid with Newtonian heating”. Eur. Phys. J. Plus, Vol. 129, pp. 97 (2014).

                 

[23].      T. Hayat, S. Asad, M. Mustafa and A. Alsaedi, “Boundary layer flow of Carreau fluid over a convectively heated stretching sheet”. Appl. Math. Comp., Vol. 246, pp. 12–22 (2014). 

                 

[24].      T. Hayat, M. Farooq and A. Alsaedi, “Homogeneous-heterogeneous reactions in the stagnation point flow of carbon nano-tubes with Newtonian heating”. AIP Adv.Vol.  5, No. 2, pp. 027130 (2015).

                 

[25].      T. Hayat, M. Farooq and A. Alsaedi, “Melting heat transfer in the stagnation-point flow of Maxwell fluid with double-diffusive convection.” Int. J. Numer. Methods Heat Fluid Flow, Vol. 24, No. 3, pp. 760–774, 2014.

                 

[26].      T. Hayat, S. A. Shehzad, A. Alsaedi and M. S. Alhothuali, “Mixed convection stagnation point flow of Casson fluid with convective boundary conditions”. Chin. Phys. Lett., Vol. 29, No. 11, pp. 114704 (2012).

                 

[27].      T. Hayat, M. Waqas, S. A. Shehzad and A. Alsaedi “Mixed convection radiative flow of Maxwell fluid near a stagnation point with convective condition”. J. Mech., Vol. 29, No. 3, pp. 403–409 (2013).

                 

[28].      T. Hayat,  M. Waqas, S. A. Shehzad and A. Alsaedi, “Effects of Joule heating and thermophoresis on stretched flow with convective boundary conditions”. Sci. Iranica B., Vol. 21, No. 3, pp. 682–692 (2014).

                

[29].      T. Hayat, M. Waqas, S. A. Shehzad and A. Alsaedi, “A model of solar radiation and Joule heating in magnetohydrodynamic (MHD) convective flow of thixotropic nanofluid”. J. Mol. Liq., Vol. 215, No. 1, pp. 704–710 (2016). 

                 

[30].      T. Hayat, M. Waqas, S. A. Shehzad and A. Alsaedi,  “Stretched flow of Carreau nanofluid with convective boundary condition”. Pram. J. Phy., Vol. 86, No. 1, pp. 3–17 (2016).

                 

[31].      O. D. Makinde, “Computational modelling of MHD unsteady flow and heat transfer towards a flat plate with Navier slip and Newtonian heating”. Braz. J. Chem. Eng., Vol. 29, No. 1, pp. 159–166 (2012).

                 

[32].      L. Zheng, Y. Lin and X. Zhang, “Marangoni convection of power law fluids driven by power-law temperature gradient”. J. Franklin Inst., Vol. 349, No. 8, pp. 2585–2597 (2012).

                 

[33].      L. Zheng,  C. Zhang, X. Zhang and J. Zhang, “Flow and radiation heat transfer of a nanofluid over a stretching sheet with velocity slip and temperature jump in porous medium”. J. Franklin Inst., Vol. 350, No. 5, pp. 990–1007 (2013).

                 

[34].      S. Jain and R. Choudhary “Soret and Dufour effects on MHD fluid flow due to moving permeable cylinder with radiation.” Global and stochastic analysis, SI: pp. 75-84 (2017).

                 

[35].      S. Jain and R. Choudhary, “Effects of MHD on boundary layer flow in porous medium due to exponentially shrinking sheet with slip”, Procedia Engineering, Vol. 127, pp. 1203–1210.

                 

[36].      S. Jain and A. Parmar, “Study of radiative heat transfer of nano-Williamson fluid flow through a porous medium”. Acta Technica, Vol. 62, No. 2, pp. 137–150 (2017).

                 

[37].      S. Jain, V. Kumar and S. Bohra, “Entropy Generation for MHD Radiative Compressible Fluid Flow in a Channel partially filled with porous Medium”, Global and stochastic analysis, SI: pp. 13-31 (2017).

                 

[38].      S. Jain and S. Bohra, “Heat and mass transfer over a three-dimensional inclined non-linear stretching sheet with convective boundary conditions”. Indian Journal of Pure & Applied Physics, Vol. 55, pp. 847-856 (2017).  

                 

[39].      A. Parmar, “MHD Falkner-Skan flow of Casson fluid and heat transfer with variable property past a moving wedge”. International Journal of Applied and Computational Mathematics, (2017).

                 

[40].      A. Parmar, “Unsteady convective boundary layer flow for MHD Williamson fluid over an inclined porous stretching sheet with non-linear radiation and heat source”. International Journal of Applied and Computational Mathematics,

                 

[41].      S. Jain and R. Choudhary, “Combined effects of sunction/injection on MHD boundary Layer flow of nanofluid over horizontal permeable cylinder with radiation”. Journal of advanced research in Dynamical and Control System, Vol. 11, pp. 88-98 (2017).

 

[42].      S. Jain and S. Bohra, “Heat and mass transfer over a three-dimensional inclined non-linear stretching sheet with convective boundary conditions”. Indian Journal of Pure and Applied Physics, Vol. 55, pp. 847-856 (2017).

               

[43].      D. S. Chauhan and V. Soni, “Heat transfer in couette flow of a compressible Newtonian fluid with variable viscosity and Thermal conductivity in the presence of a naturally permeable boundary”. J. of ultra-scientist of Physical Sciences, Vol. 6, No. 1, pp. 24-29 (1994).

 

[44].      D. S. Chauhan and P. Vyas,  “Heat transfer in hydromagnetic couette flow of compressible Newtonian fluid”. J. of Engng. Mech; ASCE (American Society of Civil Engineers), Vol. 121 No. 1, pp. 57-61 (1995).

 

[45].      H. I. Andersson, O. R. Hansen and B. Holmedal, “Diffusion of a chemically reactive species from a stretching sheet”. Int J Heat Mass Transfer, Vol. 37, pp. 659–64 (1994).

 

[46].      S. Mukhopadhyay, A. M. Golam and A. P. Wazed, “Effects of transpiration on unsteady MHD flow of an UCM fluid passing through a stretching surface in the presence of a first order chemical reaction”. Chin Phys B., Vol. 22, pp. 124701 (2013).

 

[47].      S. Palani, B. R. Kumar and P. K. Kameswaran, “Unsteady MHD flow of an UCM fluid over a stretching surface with higher order chemical reaction”. Ain Shams Engg J., Vol. 7, pp. 399–408 (2016).

 

[48].      K. V. Prasad, A. Sujatha, K. Vajravelu and I. Pop “MHD flow and heat transfer of a UCM fluid over a stretching surface with variable thermos-physical properties”. Meccanica, Vol. 47, pp. 1425–39 (2012). 

CAPTCHA Image