Document Type: Research Paper

Authors

Department of Mechanical Engineering, Faculty of Engineering, Kharazmi University, P.O. Box 15719-14911, Tehran, Iran

Abstract

In this paper, a comparison is made between direct and indirect perturbation approaches to solve the non-linear vibration equations of a piezoelectrically actuated cantilever microbeam. In this comparison, the equation of motion is considered according to Euler-Bernoulli theory with considering the non-linear geometric and inertia terms resulted from shortening effect. In the direct perturbation approach, the multiple scales method is directly applied to the partial differential equation of motion. In the indirect approach, the multiple scales perturbation technique is applied to the discretized equation of motion. It is shown that, if the equation of motion is discretized using one non-uniform microbeam mode shape as a comparison function, then the results of indirect perturbation approach will be identical to those of the direct perturbation approach. Moreover, it is observed that discretization using one uniform microbeam mode shape as a comparison function results in a different output. The concept of non-uniform microbeam mode shape is the linear mode shape of the microbeam by considering the geometric and inertia effects of the piezoelectric layer. 

Keywords

Main Subjects

[1] M. I. Younis, MEMS Linear And Nonlinear statics and dynamics, Springer, New York , pp. 68-70, (2011) .

[2] S. N. Mahmoodi and N. Jalili, “Non-linear vibrations and frequency response analysis of piezoelectrically driven microcantilevers”, Int. J. Nonlinear Mech, Vol. 42, No. 4, pp. 577- 587, (2007).

[3] S. N. Mahmoodi, M. Afshari and N. Jalili, “Nonlinear vibrations of piezoelectric microcantilevers for biologically-induced surface stress sensing”, Commun Nonlinear Sci Numer Simul, Vol. 13, No. 9, pp. 1964-1977, (2007).

[4] S. N. Mahmoodi and N. Jalili, Coupled “Flexural-Torsional Nonlinear Vibrations of      Piezoelectrically Actuated Microcantilevers With Application to Friction Force Microscopy”, J Vib Acoust., Vol. 130 No. 6, 061003(10pp), (2008).

[5] S. N. Mahmoodi, N. Jalili and M. Ahmadian, “Subharmonics analysis of nonlinear flexural vibrations of piezoelectrically actuated microcantilevers”, Nonlinear Dyn., Vol. 59, No. 3, 397-409, (2010).

[6] A. Shooshtari, , S.M. Hoseini, , S.N. Mahmoodi, and H. Kalhori, “Analytical solution for nonlinear free vibrations of viscoelastic microcantilevers covered with a piezoelectric layer”, Smart Mater. Struct., Vol. 21, No. 7, pp. 075015 (10pp) ,(2012).

[7] S. M Hosseini, A. Shooshtari , H. Kalhori and S. N. Mahmoodi   “Nonlinear-forced vibrations of piezoelectrically actuated viscoelastic cantilevers”, Nonlinear Dyn.,  Vol. 78, No. 1, pp. 571-583, (2014).

[8] S. M. Hoseini, H. Kalhori,  A. Shooshtari and S. N. Mahmoodi, “Analytical solution for nonlinear forced response of a viscoelastic piezoelectric cantilever beam resting on a nonlinear elastic foundation to an external harmonic excitation”, Composites Part B  ;Vol.  67, No. 1, pp. 464-471, (2014).

[9] M. H. Korayem and R. Ghaderi, “Vibration response of a piezoelectrically actuated  microcantilever subjected to tip–sample interaction”, Sci. Iran. Vol. 20, No. 1, pp. 195-206, (2013).

[10] A. J. Dick, B. Balachandran, D. L. DeVoe and J. Mote, “Parametric identification of piezoelectric microscale resonators”, J. Micromech. Microeng., Vol. 16, No. 8, pp. 1593-1601, (2006).

[11] H. Raeisifard, M. Zamanian, M. Nikkhah Bahrami, A. Yousefi-Komad and H. Raeisi Fard, “On the nonlinear primary resonances of a piezoelectric laminated micro system under electrostatic control voltage”. J Sound Vib .,Vol. 333, No. 21, pp. 5494–5510, (2014).

[12] H. Li, S. Preidikman, , B. Balachandran, and J. Mote, “Nonlinear free and forced oscillations of piezoelectric microresonators”, J. Micromech. Microeng., Vol. 16, No. 2, pp. 356-367, (2006).

[13] M. Zamanian, S. E.  Khadem and  S. N. Mahmoodi,  “Analysis of non-linear vibrations of a microresonator under piezoelectric and electrostatic actuations”, Proc. IMechE  Part C: J. Mech. Eng. Sci., Vol. 223, No. 2,  pp. 329-344, (2009).

[14] M. C. Rachael and  N. Mahmoodi, “Parameter sensitivity analysis of nonlinear piezoelectric probe in tapping mode atomic force microscopy for measurement improvement”, J. applied physics,Vol. 115, No.7, 074501(9pp), (2014).

[15] M. C. Rachael and N. Mahmoodi, “Nonlinear forced response of piezoelectric microcantilevers with application to tapping mode atomic force microscopy” Proc.of SPIE 9057, Vol. 9057, No. 1, 905722(13pp), (2014).

[16] M.  Zamanian, H. Rezaei, M. Hadilu and S. A. A. Hosseini, A comprehensive analysis on the discretization method of the equation of motion in piezoelectrically actuated microbeam Smart Structures and Systems, Vol. 16, No. 5, pp. 891-918 , (2015)      

[17] A. H. Nayfeh, Introduction to perturbation technique, Wiley, New York ,  pp.338-400, (1993).

CAPTCHA Image