Heat and Mass Transfer
K. Suneetha; S. M. Ibrahim; G.V. Ramana Reddy; P. Vijaya Kumar
Abstract
Due to their position in various industrial applications, convective fluid flow structure is intricate and enticing to investigate. Here the flow has been made by considering multitudinous apropos parameters like induced magnetic factor, heat source and viscous dissipation effects for the mixed convective ...
Read More
Due to their position in various industrial applications, convective fluid flow structure is intricate and enticing to investigate. Here the flow has been made by considering multitudinous apropos parameters like induced magnetic factor, heat source and viscous dissipation effects for the mixed convective chemically radiative fluid from a vertical surface. The frame work of mathematical pattern is conferred with in the circumstances of a system of ordinary differential equations under felicitous legislation.The governed mathematical statement is handled analytically by perturbation strategy. Diagrams and numerical values of the profiles are delineated with apropos parameters. Our sketches illustrate that the induced magnetic field is perceived to be downward with intensification in magnetic parameter. Temperature profile is accelerated by rising thermal radiation and concentration distribution is decelerated by enhancing the chemical reaction and Schmidt number.
Fluid Mechanics
K. Suneetha; S. M. Ibrahim; P. Vijaya Kumar; K. Jyothsna
Abstract
Due to the presence of rheological flow parameters and viscoelastic properties, non-Newtonian fluid structure is intricate and enticing to investigate. The flow has been made by considering variable temperature and radiation effects for the magnetohydrodynamic viscoelastic liquid past ...
Read More
Due to the presence of rheological flow parameters and viscoelastic properties, non-Newtonian fluid structure is intricate and enticing to investigate. The flow has been made by considering variable temperature and radiation effects for the magnetohydrodynamic viscoelastic liquid past a moving vertical plate in a porous state. First order homogeneous chemical reaction, Soret number, variable temperature and concentration have been taken into account. The leading mathematical proclamation is handled analytically by perturbation strategy. The central aspiration of this work is to explore the consequences of sundry parameters on fluid flow, thermal boundary and concentration profiles. Diagram and tabular trends of the profiles are delineated with apropos parameters. Our sketches illustrate that the velocity profile exposes decelerate scenery with escalating M due to the Lorentz force in the opposite direction of flow. Temperature profile is getting accelerated owing to thermal radiation and concentration distribution is declined by boosting up the chemical reaction and Schmidt number. Diminishing nature of momentum boundary layer with Sc is also portrayed. Furthermore, at the end of this paper the effects of different parameters on skin fricition coefficient and local Nusselt number are investigated.
Perturbation Technique
shaik Mohammed ibrahim; Kanna Suneetha; G.V Ramana Reddy
Abstract
The paper addresses the effects of Soret on unsteady free convection flow of a viscous incompressible fluid through a porous medium with high porosity bounded by a vertical infinite moving plate under the influence of thermal radiation, chemical reaction, and heat source. The fluid is considered to be ...
Read More
The paper addresses the effects of Soret on unsteady free convection flow of a viscous incompressible fluid through a porous medium with high porosity bounded by a vertical infinite moving plate under the influence of thermal radiation, chemical reaction, and heat source. The fluid is considered to be gray, absorbing, and emitting but non-scattering medium, and Rosseland approximation is considered to describe the radiative heat flux in the energy equation. The dimensionless governing equations for this investigation are solved analytically by using perturbation technique. The effects of various governing parameters on the velocity distributions, temperature distributions, concentration distributions, local skin-friction coefficient, local Nusselt number and local Sherwood number are shown in figures and tables and analyzed in detail. It was noticed that the velocity distribution increased with increasing buoyancy parameters, temperature profiles decreased with increasing Prandtl number and concentration fields decreased with increasing the Schmidt number and chemical reaction parameter.