Internal Combustion Engine
R. Jyothu Naik; K. Thirupathi Reddy; S. Vishal Narayanrao
Abstract
This article describes an experimental study on fueling the port fuel injection homogeneous charge compression ignition (PFI-HCCI) combustion engine with plastic oil that is generated from waste plastics through the pyrolysis method. This study tested different exhaust gas recirculation (EGR) levels ...
Read More
This article describes an experimental study on fueling the port fuel injection homogeneous charge compression ignition (PFI-HCCI) combustion engine with plastic oil that is generated from waste plastics through the pyrolysis method. This study tested different exhaust gas recirculation (EGR) levels of 0%, 5%, 10%, and 15% using a modified PFI-HCCI computerised 4-stroke, single-cylinder, water-cooled, direct injection Kirloskar diesel engine connected to an eddy current dynamometer. Furthermore, an engine running at 1500 rpm and a constant pre heated air temperature (PHAT) of 140°C were assessed. In this experiment, fuel, 20% biodiesel waste plastic pyrolysis oil (WPPO), and continuous PHAT 140°C are used. The testing results show that the cylinder peak pressure and heat release rate for WPPO 20 with 15% EGR were attained at 39.70% and 15.09%, respectively. Additionally, port fuel injection with PHAT and WPPO 20% without EGR is reported to have a 45% higher brake thermal efficiency at full load than PFI-HCCI Diesel (D100). But when employed at full load with 15% EGR, WPPO 20 blend also reduced smoke opacity by 30.74% and Oxides of Nitrogen (NOx) emission by 52.17%. On the other hand, compared to the PFI-HCCI (D100), there are higher emissions of carbon monoxide (CO) (22.07%) and unburnt hydro carbon (UHC) (54.14%) with 15% EGR. Consequently, WPPO can be used to the PFI-HCCI engine.
Thermodynamics and Cumbustion
A. H. Kakaee; J. Zareei
Abstract
Engine performance depends on two main factors of engine speed and ignition time. Ignition timing can affect engine life, fuel economy and engine power. In this paper, to study engine performance of Peugeot 206 TU3A with comparison ratio of 10.5:1 and displacement of 1361CC in MATLAB software, a two-zone ...
Read More
Engine performance depends on two main factors of engine speed and ignition time. Ignition timing can affect engine life, fuel economy and engine power. In this paper, to study engine performance of Peugeot 206 TU3A with comparison ratio of 10.5:1 and displacement of 1361CC in MATLAB software, a two-zone burned/unburned model with the fuel burning rate described by aWiebe function was used for modeling in-cylinder combustion. For studying this issue, thermodynamic models such as Woshni, Isentropic, etc. were used. Then, the experiments were carried out to validate the calculated data. The objective of the present work was to examine effect of ignition timing on the performance of an SI engine. For achieving this goal, at the speed of 3400 rpm, ignition timing was changed in the range of 41 degrees before the top dead centre to 10 degrees after TDC. By changing the ignition timing, the results of some characteristics such as power, torque, indicatory pressure, exhaust emission and efficiency were obtained and compared. The results demonstrated that optimal power and torque and the maximum efficiency were achieved at 31 degrees before the top dead centre and engine performance was improved by changing timing angle. It was also indicated that the maximum thermal efficiency could be accomplished while peak pressure occurred between 5 and 15 degrees of ATDC. The amounts of O2, CO2 and CO were almost constant but HC increased with increase of ignition timing.