Heat and Mass Transfer
Seyed Mostafa Moafi Madani; Javad Alinejad; Yasser Rostamiyan; Keivan Fallah
Abstract
In the present study, the effect of the heating pipe profile on natural convection in a two-phase fluid inside a cavity has been investigated. This geometry has been simulated with the LB Method based on the D2Q9 model for analyzing stream lines, dimensionless velocity field of fluid flow, solid particles ...
Read More
In the present study, the effect of the heating pipe profile on natural convection in a two-phase fluid inside a cavity has been investigated. This geometry has been simulated with the LB Method based on the D2Q9 model for analyzing stream lines, dimensionless velocity field of fluid flow, solid particles volume fraction, temperature arrangement, and Nusselt number. These parameters have been studied in three different cases of the cavity. The results are signified by changing the geometry from a horizontal ellipse to a circular one and a vertical ellipse;the maximum particle volume fraction is decreased. Also, by changing the geometry from a horizontal ellipse to a circular and vertical ellipse, larger velocity vectors have been formed around the geometry. The Nusselt number variations of circular and vertical ellipse geometries are from 90⁰ to 270⁰. The Nusselt number variation of horizontal ellipse geometry is negligible from 90⁰ to 270⁰. Also, the Nusselt number of the circular geometry is larger than the other geometries from 270⁰ to 90⁰. The highest average Nusselt number belongs to circular, vertical and horizontal ellipse geometries, respectively.
Computational Fluid Dynamics (CFD)
D. K. Baghel; S. L. Sinha; S. K. Dewangan
Abstract
Neonatal incubators provide an artificial thermal environment to maintain the thermoregulation of premature babies. Several studies revealed the dry and latent heat exchange estimation between the newborn's body and the surrounding environment. Heat ...
Read More
Neonatal incubators provide an artificial thermal environment to maintain the thermoregulation of premature babies. Several studies revealed the dry and latent heat exchange estimation between the newborn's body and the surrounding environment. Heat transfer due to convection is leading over the thermal radiation in incubators. The aim of this article is to study the airflow modeling and heat transfer coefficient over an infant’s body inside the incubator. For this purpose, an experiment and a numerical simulation are carried out to develop the methodology, and subsequently computational fluid dynamics (CFD) analysis is accomplished to evaluate the heat transfer coefficient of a preterm infant. By means of the shear stress transport (SST K-ω) turbulence model, 3-D computational, models are numerically studied using the commercial CFD tool Star CCM+. Flow visualization reveals that a large-scale flow circulation pattern is produced in the mean region of the enclosed chamber, and small-scale eddies are generated at corners and close to the walls. The numerical results obtained for heat transfer assessment in the present study are validated with experimental and numerical results available in biomedical open literature.
Computational Fluid Dynamics (CFD)
Ali Akbar Rashidi; Ehsan Kianpour
Abstract
Natural convection heat transfer is studied numerically in a triangular enclosure. The enclosure is isosceles right triangle and its bottom wall is hot, the hypotenuse is cold and the other wall is adiabatic. Also, a vertical magnetic field is applied in the enclosure; and there is hybrid nanofluid inside ...
Read More
Natural convection heat transfer is studied numerically in a triangular enclosure. The enclosure is isosceles right triangle and its bottom wall is hot, the hypotenuse is cold and the other wall is adiabatic. Also, a vertical magnetic field is applied in the enclosure; and there is hybrid nanofluid inside the enclosure. This study is conducted for Rayleigh numbers of 103-105, the Hartmann numbers between 0-80, and the volume fraction of nanofluid is between 0-2 percent. Based on the obtained results, as the Hartmann number augments, the temperature of the center of the enclosure decreases due to weakening of the heat transfer flow by increasing the magnetic field forces. In addition, as the Hartmann number augments, the streamlines approach to the walls because the horizontal momentum forces decrease when the Hartmann number increases. Furthermore, by increasing the density of nanoparticles, the heat transfer rate increases, and as a result, heat transfer builds up. Finally, heat transfer improves when the hybrid-nanofluid is employed rather than ordinary nanofluid.
Heat and Mass Transfer
A. Parandhama; K. V. S. Raju; M. C. Raju
Abstract
In this study, effects of numerous physical quantities like dissipation, thermal radiation, and induced magnetic field on magnetohydrodynamic Casson fluid flow through a vertical plate is addressed. The non-dimensional multivariable governing equations are solved numerically by by means of Runge-Kutta ...
Read More
In this study, effects of numerous physical quantities like dissipation, thermal radiation, and induced magnetic field on magnetohydrodynamic Casson fluid flow through a vertical plate is addressed. The non-dimensional multivariable governing equations are solved numerically by by means of Runge-Kutta method along with shooting technique. The behavior of velocity, temperature and induced magnetic fields for different physical aspects is discussed through graphical illustrations. The influence of physical constants like Casson fluid (β), Magnetic parameter Μ, Soret number Sc, Prandtl number Pr, Magnetic Prandtl number etc., on induced magnetic field, temperature and velocity is analyzed. Interesting observation of this study is that the effect of velocity distribution obeys the physical nature of well-known Newtonian and all other Non-Newtonian fluids.
Heat and Mass Transfer
M. Ghalambaz; A. Noghrehabadi
Abstract
In this paper, natural convection heat transfer over a vertical plate in a Darcy porous medium saturated with a nanofluid subject to heat generation/absorption was theoretically studied. The governing partial differential equations were transformed to a set of ordinary differential equations using similarity ...
Read More
In this paper, natural convection heat transfer over a vertical plate in a Darcy porous medium saturated with a nanofluid subject to heat generation/absorption was theoretically studied. The governing partial differential equations were transformed to a set of ordinary differential equations using similarity transformations and solved using finite difference method. The influence of parametric variation of the Brownian motion parameter, thermophoresis parameter and heat generation/absorption parameter on velocity, temperature and nanoparticles concentration profiles was graphically shown. Impact of non-dimensional parameters on the reduced Nusselt number and reduced Sherwood number was also investigated. The results showed that an increase in the heat generation/absorption parameter would increase temperature and velocity profiles; but, it would decrease concentration profiles. Increase of thermophoresis parameter increased magnitude of concentration profiles while not showing any significant effect on velocity and temperature profiles. The results also indicated that increase of Brownian motion parameter did not demonstrate any significant effect on the magnitude of velocity and temperature profiles. It was found that an increase in the heat generation/absorption parameter decreased the reduced Nusselt number whereas it increased the reduced Sherwood number. For negative values of the Brownian motion parameter, increase of the thermophoresis parameter increased the reduced Nusselt and Sherwood numbers.