Computational Fluid Dynamics (CFD)
S. Akbarnejad; M. Ziabasharhagh
Abstract
This paper presents a novel 1D modeling approach to optimize steam ejector entrainment ratios, introducing new definitions of ejector efficiency and enhancement methods. Using the proposed model, an ejector is tailored for specific boundary conditions with available computational fluid mechanic ...
Read More
This paper presents a novel 1D modeling approach to optimize steam ejector entrainment ratios, introducing new definitions of ejector efficiency and enhancement methods. Using the proposed model, an ejector is tailored for specific boundary conditions with available computational fluid mechanic results for validation. Dimensional and geometrical parameters are computed from the theoretical 1D model, and various geometries are explored using computational fluid mechanic to determine entrainment ratios. Innovative definitions of ejector efficiency are introduced. The first definition compares the entrainment ratio of the ejector to a system comprising a steam compressor, turbine, and mixer, yielding an efficiency of 13.5% under specified conditions. The second, more practical definition calculates the maximum achievable entrainment ratio, disregarding frictional losses, resulting in an efficiency of 70%. An algorithm is proposed to optimize ejector dimensions to approach this maximum. Using this algorithm, the optimum throat diameter was determined through computational fluid mechanic analysis, demonstrating an increase in the entrainment ratio from 0.7 to 1.25. The theoretical maximum value calculated by the 1D model is 1.282, indicating that 97.7% of the theoretical maximum was achieved in computational fluid mechanic simulations. This highlights the significant improvement in the entrainment ratio using the 1D model and delineates its limit under given conditions. The third definition establishes the theoretical maximum entrainment ratio given specific boundary conditions and dimensions, assuming no losses in the nozzle, mixing process, or diffuser; yielding an efficiency of 81% for the same ejector studied.
Power Generation
R. Nasrin; M. Saddam Hossain
Abstract
Photovoltaic (PV) module is one of the most useful, sustainable and non-harmful products in the field of renewable energy. It offers longer service period for least maintenance cost. The elements of PV are abrasive, easy for designing, and their structure like the stand-alone technique gives production ...
Read More
Photovoltaic (PV) module is one of the most useful, sustainable and non-harmful products in the field of renewable energy. It offers longer service period for least maintenance cost. The elements of PV are abrasive, easy for designing, and their structure like the stand-alone technique gives production from micro to mega-power level. A 3D numerical system of PV module has been built up and solved applying FEM technique-based software COMSOL Multiphysics in this article. The average solar irradiation and optimum tilt angle for six divisions (Dhaka, Chittagong, Rajshahi, Khulna, Barishal and Sylhet) in Bangladesh have been calculated. The effects of solar radiation, angle of inclination, ambient temperature, and partial shading on temperature of solar cell, electrical power and PV module's electrical efficiency have been investigated. It has been observed from the results that the greatest value of electrical power 15.14 W is found in Rajshahi for solar radiation 209 W/m2. The highest electrical efficiency is found as 12.85% in Sylhet at irradiation level of 189 W/m2. For every 1° increase of inclination angle, electrical power and electrical efficiency level devalue by 0.06 W and 0.05%, respectively. Results also show that the efficiency level decreases from 14.66 to 11.32% due to partial shading area from 0 to 40%. PV module's electrical power; and electrical efficiency reduces approximately 0.01 W and 0.01%, respectively due to every 1°C addition of solar cell temperature.