Computational Fluid Dynamics (CFD)
D. K. Baghel; S. L. Sinha; S. K. Dewangan
Abstract
Neonatal incubators provide an artificial thermal environment to maintain the thermoregulation of premature babies. Several studies revealed the dry and latent heat exchange estimation between the newborn's body and the surrounding environment. Heat ...
Read More
Neonatal incubators provide an artificial thermal environment to maintain the thermoregulation of premature babies. Several studies revealed the dry and latent heat exchange estimation between the newborn's body and the surrounding environment. Heat transfer due to convection is leading over the thermal radiation in incubators. The aim of this article is to study the airflow modeling and heat transfer coefficient over an infant’s body inside the incubator. For this purpose, an experiment and a numerical simulation are carried out to develop the methodology, and subsequently computational fluid dynamics (CFD) analysis is accomplished to evaluate the heat transfer coefficient of a preterm infant. By means of the shear stress transport (SST K-ω) turbulence model, 3-D computational, models are numerically studied using the commercial CFD tool Star CCM+. Flow visualization reveals that a large-scale flow circulation pattern is produced in the mean region of the enclosed chamber, and small-scale eddies are generated at corners and close to the walls. The numerical results obtained for heat transfer assessment in the present study are validated with experimental and numerical results available in biomedical open literature.
Fluid Mechanics
Mohammad Reza Aligoodarz; Mohsen Dalvandi; Abdollah Mehrpanahi
Abstract
The centrifugal slurry pump is the most common slurry flow pump used in mining industries. The pump head and efficiency are affected by the size, concentration, and density of solid particle when these pumps are applied for the control of slurries. Because the suspended solids in the liquid could not ...
Read More
The centrifugal slurry pump is the most common slurry flow pump used in mining industries. The pump head and efficiency are affected by the size, concentration, and density of solid particle when these pumps are applied for the control of slurries. Because the suspended solids in the liquid could not well absorb, store, and transmit pressure energy, they cause quite different changes in efficiency and performance curve shape. This study was conducted to investigate the variations of the mentioned factors at different flow rates using a numerical simulation of the centrifugal slurry pump. For this purpose, the 3D turbulent flow was solved by applying Reynolds-Averaged Navier-Stokes (RANS) equations using the Shear Stress Transfer (SST) turbulence model based on Eulerian-Eulerian for 45% to 120% flow rates in CFX (Ver. 17) software. The accuracy of the numerical solution was investigated by comparing the characteristic curves resulting from the numerical solution with experimental data. The obtained results show a satisfactory fitting among the calculated values from the numerical analysis and experimental data to predict pressure and velocity distribution and global performance. Moreover, by simulating the effect of different parameters of the slurry flow, their effect on the characteristic curves of the slurry pump was compared. These results reveal that the numerical solution can efficiently predict the variation trend of the slurry flow parameters.
Aerodynamics
ava shahrokhi; sahar noori
Abstract
The influence of the plug shape on the performance of an aerospike nozzle thrust force is studied in different back pressure conditions. To generate smooth plug contours, Cubic B-Spline technique is employed. In the current research, basis functions are obtained using Deboor’s relation. The flow ...
Read More
The influence of the plug shape on the performance of an aerospike nozzle thrust force is studied in different back pressure conditions. To generate smooth plug contours, Cubic B-Spline technique is employed. In the current research, basis functions are obtained using Deboor’s relation. The flow field around the aerospike nozzle is investigated implementing various shapes and the best of the generated configurations is determined. The flow field is simulated using Navier-Stokes equations and k-ε turbulence model. A triangle unstructured grid is applied for discretization of the governing equations. The computational methodology utilizes steady state density-based formulation and a finite volume cell centered scheme is used to discretize the flow field equations. To accelerate the solution convergence, the flow field is divided into several zones and appropriate initial condition is assigned to each zone. Six different shapes of the plug are generated and the effect of the spike shape on the formation of the shock wave and expansion waves is investigated in each case. The thrust force is calculated for each case and the best configuration is determined in terms of the maximum thrust generation. Eventually, the temperature distribution is calculated along the nozzle for further investigations and it is concluded that the best configurations show a lower temperature rise compared to other designs.