Fluid Mechanics
A Hassanvand; Mojtaba Saei Moghaddam; M. Barzegar Gerdroodbary; Y Amini
Abstract
Finding the solutions for heat and mass transfer problems is significant to reveal the main physics of engineering issues. In this work, the Adomian decomposition method is chosen as a robust analytical method for the investigation of temperature and flow features in a viscous fluid that moves between ...
Read More
Finding the solutions for heat and mass transfer problems is significant to reveal the main physics of engineering issues. In this work, the Adomian decomposition method is chosen as a robust analytical method for the investigation of temperature and flow features in a viscous fluid that moves between two parallel surfaces. To ensure the validation of results, the outcome of the Adomian decomposition method is compared with that of the Runge-Kutta method, and reasonable agreement is observed. The comparison confirms that the Adomian decomposition method is a robust and reliable approach for solving this problem. Then, diverse parameters such as Prandtl number and squeeze number are studied. Besides, the effect of chemical reaction parameter, Eckert number, and Schmidt number are comprehensively discussed. Findings reveal that the Sherwood number rises when the chemical reaction parameter and Schmidt number increase. Also, it declines with growths of the squeeze number. Likewise, The findings confirm that the Nusselt number enhances with the rising of the Eckert number and Prandtl number, and it declines when the squeeze number increases.