Deepak Kumar Sharma; Tikendra Nath Verma
Abstract
The present study focuses on the optimization in the use of non-petroleum fuel derived from waste fish oil fuels, as a replacement for petroleum diesel fuel for compression ignition engine. The study comprises of comparison between results of fish oil biodiesel-diesel blends in a compression ignition ...
Read More
The present study focuses on the optimization in the use of non-petroleum fuel derived from waste fish oil fuels, as a replacement for petroleum diesel fuel for compression ignition engine. The study comprises of comparison between results of fish oil biodiesel-diesel blends in a compression ignition engine. Fuel properties such as viscosity, density, heat value of fuel, cetane number and a flash point of fish oil biodiesel and its blends with diesel were studied. The fish oil biodiesel (60, 40, 20, and 0%) – diesel (40, 60, 80 and 100%) are blended at volume basis. The results show reduction in thermal efficiency, temperature, particulate matter and nitrogen oxides emission; while showing an increase in higher specific fuel consumption, ignition delay, carbon dioxide and smoke emissions. The B20 fuel blend improves BTE by 4.7%, CO2 emissions has been increased by 2.56%, while SFC is lowered by 7.92% as compared to diesel fuel. In biodiesel blend (B20), the highest reduction in NOx by 14.9%, particulate by 4.22% is observed although smoke emission slightly rises with an increase in fish oil in the blends, as compared to diesel fuel.
Internal Combustion Engine
Deepak Kumar Sharma; Tikendra Nath Verma
Abstract
The present study focuses on the optimization in the use of non-petroleum fuel derived from waste fish oil fuels, as a replacement for petroleum diesel fuel for compression ignition engine. The study comprises of comparison between results of fish oil biodiesel-diesel blends on a compression ignition ...
Read More
The present study focuses on the optimization in the use of non-petroleum fuel derived from waste fish oil fuels, as a replacement for petroleum diesel fuel for compression ignition engine. The study comprises of comparison between results of fish oil biodiesel-diesel blends on a compression ignition engine. Fuel properties such as viscosity, density, heat value of fuel, cetane number and a flash point of fish oil biodiesel and its blends with diesel were studied. The fish oil biodiesel (60, 40, 20, and 0%) – diesel (40, 60, 80 and 100%) are blended at volume basis. The results shows reduction in thermal efficiency, temperature, particulate matter and nitrogen oxides emission; while showing an increase in higher specific fuel consumption, ignition delay, carbon dioxide and smoke emissions. The B20 fuel blend improves BTE by 4.7%, CO2 emissions has been increased by 2.56%, while SFC is lowered by 7.92% as compared to diesel fuel. In biodiesel blend (B20) the highest reduction in NOx by 14.9%, particulate by 4.22% is observed although smoke emission slightly rises with increase in fish oil in the blends, as compared to diesel fuel.