[1] F. S. Falk, “Approximation of a class of optimal control problems with order of convergence estimates”, J. Math. Anal. Appl., Vol. 44, pp. 28-47, (1973).
[2] T. Geveci, “In the approximation of the solution of an optimal control problem governed by an elliptic equations”, R.A.I.R.O. Numer. Anal., Vol. 13, pp. 313-328, (1979).
[3] W. B. Liu and N. N. Yan, “Adaptive finite element methods for optimal control governed by PDEs”, Science Press, Beijing, (2008).
[4] Y. Chen, "A posteriori error estimates for mixed finite element solutions of convex optimal control problems ," J. Comp. Appl. Math., Vol. 211, pp. 76-89, (2008).
[5] Z. Lu and Y. Chen, “A posteriori error estimates of triangular mixed finite element methods for semi-linear optimal control problems”, Adv. Appl. Math. Mech., Vol. 1, pp. 242-256, (2009).
[6] Z. Lu and Y. Chen, “-error estimates of triangular mixed finite element methods for optimal control problem govern by semilinear elliptic equation”, Numer. Anal. Appl., Vol. 12, pp. 74-86, (2009).
[7] Y. Chen and Z. Lu, “Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problems”, Comput. Methods Appl. Mech. Eng., Vol. 199, pp. 1415-1423, (2010).
[8] M. Hinze, “A variational discretization concept in control constrained optimization: the linear quadratic case”, J. Comput. Optim. Appl., Vol. 30, pp. 45-63, (2010).
[9] Z. Lu, Y. Chen and H. Zhang, “A priori error analysis of mixed methods for nonlinear quadratic optimal control problem”, Lobachevskii J. Math., Vol. 29, pp. 164-174, (2007).
[10] Y. Chen and Z. Lu, “Error estimates for parabolic optimal control problem by fully discrete mixed finite element methods”, Finite Elem. Anal. Des., Vol. 46, pp. 957-965, (2010).
[11] Y. Chen, L. Dai and Z. Lu, “Superconvergence of rectangular mixed finite element methods for constrained optimal control problem”, Adv. Appl. Math. Mech, Vol. 2, pp.56-75, (2010).
[12] Y. Chen and W. B. Liu, “Error estimates and superconvergence of mixed finite elements for quadratic optimal control,” Internat. J. Numer. Anal. Modeling, Vol. 3, pp. 311-321, (2006).
Send comment about this article