Document Type : Review paper


1 OP Jindal University, Raigarh

2 Student, OP Jindal University


Solar energy is the highly recognized energy source, capable of fulfilling the world’s future energy demands. The solar photovoltaic technology involves the unmediated transformation of sunlight into electricity. A little fraction is converted into electricity and the remaining gets exhausted as unused heat. This results in an increase in the operating temperature of the PV Panel. The conversion efficiency and the life span of the photovoltaic panel are affected by an increase in working temperature. Hence, an appropriate cooling technique is essentially required for maintaining the operating temperature of the module within the limits prescribed so as to obtain higher electrical yield and increased lifespan. The objective of this paper is to present a summary of the various cooling techniques used to enhance the performance of PV panels, namely air cooling - free and forced, water spray cooling, cooling by phase change materials, heat pipe cooling, liquid immersion cooling and forced water circulation. Several research articles are reviewed and classified on the basis of technology used for the thermal management of PV modules. The paper also investigates one of the passive evaporative cooling technique to control the temperature rise of the PV module and enhancement in efficiency. Around 12oC reduction in PV panel temperature under maximum insolation and 7.7 % increase in average electric power generation efficiency was observed under this technique.

Graphical Abstract

A systematic approach for a better thermal management of photovoltaic systems- A review


Main Subjects

[1]   N. L. Panwar, S. C. Kaushik, and S. Kothari, “Role of renewable energy sources in environmental     protection: A review”,Renewable and Sustainable Energy Reviews, Vol. 15, No. 3, pp. 1513–  1524, (2011).


[2]   Bhubaneshwari Parida, S.Inyan, Ranko Goic, "A review of solar photovoltaic technologies", Renewable and Sustainable Energy Reviews,  Vol. 15, No. 3, pp. 1625–1636, (2011).


[3] H.P Garg and J. Prakash “Solar Energy: Fundamentals and Applications”,First Revised Edition, Tata McGraw- Hill, pp. 370-371, (2000).


[4] L. El Chaar, L. A. Lamont, and N. El Zein,“Review of photovoltaic technologies”,  Renewableand Sustainable Energy Reviews, Vol. 15, No. 5, pp. 2165–2175,(2011).


[5] M. M. Fouad, L. A. Shihata, and E. S. I. Morgan, “An integrated review of factors influencing the performance of photovoltaic panels”,Renewable and Sustainable Energy Reviews, Vol. 80, pp. 1499–1511,(2017).


[6] Moharram KA, Abd-Elhady MS, Kandil HA, El-Sherif H, " Enhancing the performance of photovoltaic panels by water cooling”, Ain Shams Engineering Journal, Vol. 4, No.4, pp. 869–77, (2013).


[7] Abd-Elhady MS, Fouad MM, Khalil T. “Improving the efficiency of photovoltaic (PV) panels by oil           coating”,Energy Conversion Management, Vol. 115, pp. 1– 7, (2016).


[8] E. Skoplaki and J. A. Palyvos, “On the   temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations”, Solar Energy, Vol. 83, No. 5, pp. 614–624, (2009).


[9] Radziemska E, "The effect of temperature on the power drops in crystalline silicon solar cells", Renewable Energy, Vol. 28, pp. 1–12, (2003).


[10] M. M. Rahman, M. Hasanuzzaman, and N. A. Rahim, “Effects of various parameters on PV-module power and efficiency”, Energy Conversion and Management,Vol. 103, pp. 348–358,(2015).


[11] N. H. Zaini, M. Z. Ab Kadir, M. Izadi, N. I.        Ahmad, M. A. M. Radzi, and N. Aziz, “The       effect of temperature on a mono- crystalline solar PV panel”,IEEE Conference on  Energy Conversion,             CENCON,pp. 249–253, (2015).


[12] Y. Du, C. J. Fell, B. Duck, D. Chen, K. Liffman, Y. Zhang, M. Gu, and Y. Zhu, “Evaluation of photovoltaic panel    temperature in realistic scenarios”,Energy Conversion and Management, Vol. 108, pp. 60–67, (2016).


[13] J. K. Tonui and Y. Tripanagnostopoulos, “Performance improvement of PV/T solar collectors with      natural air flow operation”, Solar Energy, Vol. 82, No. 1, pp. 1–12, (2008).


[14] E. Cuce, T. Bali, and S. A. Sekucoglu,“Effects of passive cooling on performance of silicon             photovoltaic cells”, International Journal of Low-Carbon Technology, Vol. 6, No. 4, pp.   299–308,    (2011).


[15] Correa-Betanzo, C. Calleza, H, & DeLeon-Aldaco, S. “ Module temperature models assessment of photovoltaic seasonal energy yield”,Sustainable Energy Technology & Assessments, Vol. 27, pp. 9– 16, (2018).


[16] F. Grubišić-Čabo, S. Nižetić, D. Čoko, I. MarinićKragić, and A. Papadopoulos,“Experimental             investigation of the passive cooled free-standing photovoltaic panel with fixed aluminum fins on the backside surface”,Journal of Cleaner Production, Vol. 176, pp. 119–129, (2018).


[17] Han, X., Wang, Y., & Zhu, L. "Electrical and thermal performance of silicon concentrator solar cells immersed in dielectric liquids", Applied Energy, Vol. 88,  No. 12, pp. 4481-4489, (2011).


[18] G. Xin, Y. Wang, Y. Sun, Q. Huang, and L. Zhu, “Experimental study of liquid- immersion III-V multi-   junction solar cells with dimethyl silicon oil under high concentrations”,Energy Conversion and  Management, Vol. 94, pp. 169–177, (2015).


[19] M. Chandrasekar, S. Suresh, T. Senthilkumar, and M. Ganesh Karthikeyan, “Passive cooling of  standalone flat PV module with cotton wick structures”, Energy Conversion and Management, Vol. 71, pp. 43–50, (2013).


[20] W. G. Anderson, S. Tamanna, D. B. Sarraf, P. M. Dussinger, and R. W. Hoffman, “Heat Pipe Cooling of Concentrating Photovoltaic (CPV) Systems”,Am. Inst. Aeronaut. Astronaut., pp. 9, (2008).


[21] P. Gang, F. Huide, Z. Tao, and J. Jie, “A  numerical and experimental study on a heat pipe PV/T system”,Solar Energy, Vol. 85, No. 5, pp. 911–921, (2011).


[22] M. Moradgholi, S. M. Nowee, and I. Abrishamchi, “Application of heat pipe in an experimental investigation on a novel photovoltaic/thermal (PV/T) system”,Solar Energy, Vol. 107, pp. 82–88, (2014).


[23] Y. Du, “Advanced thermal management of a solar cell by a nano-coated heat pipe plate: A thermal assessment”,Energy  Conversion and Management, Vol. 134, pp. 70–76, (2017).


[24] Singh P, Ravindra NM., "Temperature   dependence of solar cell performance an analysis",Solar Energy Materialsand  Solar Cells, Vol. 101, pp. 36–45, (2012).


[25] S. Koundinya, N. Vigneshkumar, and A. S. Krishnan, “Experimental Study and       Comparison with the Computational Study on Cooling of PV Solar Panel Using Finned Heat Pipe Technology”,Materials Today Proceedings, Vol. 4, No. 2, pp. 2693–  2700, (2017).


[26] J. Park, T. Kim, and S. B. Leigh, “Application of a phase-change material to improve the electrical performance of vertical-building-added photovoltaics considering the annual weather conditions”, Solar Energy, Vol. 105, pp. 561–574, (2014).


[27] Y. S. Indartono, A. Suwono, and F. Y.   Pratama,“Improving photovoltaics performance by using yellow petroleum jelly as phase change material”, International Journal of Low- Carbon Technology, Vol. 11, No. 3, pp. 333– 337, (2016).


[28] P. Atkin and M. M. Farid, “Improving the efficiency of photovoltaic cells using PCM infused graphite and aluminium fins”, Solar Energy, Vol. 114, pp. 217–228,    (2015).


[29] R. Stropnik and U. Stritih, “Increasing the efficiency of PV panel with the use of PCM”,Renewable Energy, Vol. 97,pp. 671–679, (2016).


[30] M.A. Kibra, R. Saidur, F.A. Al-Sulaiman, M.M.A Aziz, "Development of a thermal model for a hybrid photovoltaic module and phase change materials storage integrated in buildings", Solar Energy, Vol. 124, pp. 114-123, (2016).


[31] E. Klugmann-Radziemska and P. Wcisło- Kucharek, “Photovoltaic module temperature stabilization    with the use of phase change materials”,Solar Energy, Vol. 150, pp. 538–545, (2017).


[32]Z. Luo, Z. Huang, N. Xie, X. Gao, T. Xu, Y. Fang, and Z. Zhang, “Numerical and experimental study    on temperature control  of solar panels with form-stable paraffin/expanded graphite composite    PCM”,  Energy Conversion and Management, Vol. 149, No. May, pp. 416– 423, (2017).


[33] A. Tiwari, M. S. Sodha, A. Chandra, and J. C. Joshi, “Performance evaluation of photovoltaic thermal solar air collector for composite climate of India”,Solar Energy Materialsand Solar Cells, Vol. 90, No. 2, pp. 175–189, (2006).


[34] A. S. Joshi, A. Tiwari, G. N. Tiwari, I.   Dincer, and B. V. Reddy, “Performance evaluation of a hybrid photovoltaic thermal (PV/T) (glass-to-glass) system”, International Journal of Thermal Sciences, Vol. 48, No. 1, pp. 154– 164, (2009).


[35]  A. Shahsavar and M. Ameri, “Experimental investigation and modeling of a direct-  coupled PV/T air  collector”,Solar Energy, Vol. 84, No. 11, pp. 1938–1958, (2010).


[36] H. G. Teo, P. S. Lee, and M. N. A. Hawlader, “An active cooling system for photovoltaic modules”, Applied Energy, Vol. 90, No. 1, pp. 309–315, (2012).


[37] J. H. Kim, S. H. Park, and J. T. Kim, “Experimental performance of a photovoltaic-thermal air collector”,Energy Procedia, Vol. 48, pp. 888–894, (2014).


[38] M. Farshchimonfared, J. I. Bilbao, and A. B. Sproul, “Channel depth, air mass flow           rate and air distribution duct diameter optimization of photovoltaic thermal (PV/T) air collectors linked to residential buildings”,Renewable Energy, Vol. 76, pp. 27– 35, (2015).


[39] L. pauly, L. Rekha, C. V. Vazhappilly, and C. R. Melvinraj, “Numerical Simulation for Solar Hybrid         Photovoltaic Thermal Air Collector”, Procedia Technology, Vol. 24, pp. 513–522, (2016).


[40] S. Odeh and M. Behnia, “Improving      photovoltaic module efficiency using water        cooling”, Heat Transfer Engineering, Vol. 30, No. 6, pp. 499–505,(2009).


[41] K. A. Moharram, M. S. Abd-Elhady, H. A. Kandil, and H. El-Sherif, “Enhancing the performance of         photovoltaic panels by water cooling”,Ain Shams Engineering  Journal, Vol. 4, No. 4, pp. 869–877, (2013).


[42]  Y. M. Irwan, W. Z. Leow, M. Irwanto, M. Fareq, A. R. Amelia, N. Gomesh, and I. Safwati, “Indoor             Test Performance of      PV Panel through Water Cooling Method”, Energy Procedia, Vol. 79, pp. 604– 611, (2015).


[43] C. A. Matias, L. M. Santos, A. J. Alves, and W. P. Calixto, “Electrical performance evaluation of PV panel through water cooling technique,” EEEIC 2016 –InternationalConference on Environment and ElectricalEngineering, (2016).


[44] V. Tomar, G. N. Tiwari, T. S. Bhatti, and B. Norton, “Thermal modeling and        experimental evaluation        of five different photovoltaic modules integrated on prototype test cells with and without water    flow”,  Energy Conversion and Management, Vol. 165, No. February, pp. 219–235, (2018).


[45] S. Y. Wu, C. Chen, and L. Xiao, “Heat transfer characteristics and performance evaluation of water-            cooled PV/T system      with cooling channel above PV panel”,  Renewable Energy, Vol. 125, pp. 936– 946, (2018).


[46] E. Erdil, M. Ilkan, F. Egelioglu, "An experimental study on energy generation with a photovoltaic (PV)-solar thermal hybrid system",Energy, Vol.  33, No. 8, pp. 1241-1245, (2008).


[47] B. Du, E. Hu, and M. Kolhe, “Performance analysis of water-cooled concentrated photovoltaic (CPV)             system”,Renewable       and Sustainable Energy Reviews, Vol. 16,  No. 9, pp. 6732–6736, (2012).


[48] G. Colţ, “Performance evaluation of a PV panel by rear surface water active cooling”, 2016 International Conference on Applied and Theoretical Electricity ICATE 2016 - Proc., pp. 1–5, (2016).


[49] G. Zanlorenzi, A. L. Szejka, and O. Canciglieri, “Hybrid photovoltaic module for efficiency improvement through an automatic water cooling system: A prototype case study”,Journal of Cleaner Production, Vol. 196, pp. 535–546,(2018).


[50] S SChakrabarti, P K Das,”Thermal behavior of pot-in-pot refrigerator-Simulation and Experimental approach”, Heat Transfer Research, Vol. 50,pp.1081-1103, (2019).


[51] Mahmoud, Y.; Xiao, W.; Zeineldin, H.H.     “A parameterization approach for          enhancing PV module accuracy          ”,IEEE Transactions on Industrial         Electronics, Vol. 60, No. 12,pp. 5708–  5716, (2013).