Document Type : Research Paper

Authors

School of Automotive Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran

Abstract

Recognizing a driver’s braking intensity plays a pivotal role in developing modern driver assistance and energy management systems. Therefore, it is especially important to autonomous and electric vehicles. This paper aims at developing a strategy for recognizing a driver’s braking intensity based on the pressure produced in the brake master cylinder. In this regard, a model-based, synthetic data generation concept is used to generate the training dataset. This technique involves two closed-loop controlled models: an upper-level longitudinal vehicle dynamics model and a lower-level brake hydraulic dynamic model. The adaptive particularly tunable fuzzy particle swarm optimization algorithm is recruited to solve the optimal K-means clustering. By doing so, the best number of clusters and positions of the centroids can be determined. The obtained results reveal that the brake pressure data for a vehicle traveling the new European driving cycle can be best partitioned into two clusters. A driver’s braking intensity may, therefore, be clustered as moderate or intensive. With the ability to automatically recognize a driver’s pedal feel, the system developed in this research could be implemented in intelligent driver assistance systems as well as in electric vehicles equipped with intelligent, electromechanical brake boosters.

Graphical Abstract

Braking intensity recognition with optimal K-means clustering algorithm

Keywords

Main Subjects

[1] H. R. Eftekhari, and M. Ghatee, “A similarity-based neuro-fuzzy modeling for driving behavior recognition applying fusion of smartphone sensors”, J. Intell. Transp. Syst., Vol. 23, No. 1, pp. 72-83, (2019).

[2] C. Lu, F. Hu, D. Cao, J. Gong, Y. Xing, and Z. Li, “Virtual-to-real knowledge transfer for driving behavior recognition: Framework and a case study”, IEEE Trans. Veh. Technol., Vol. 68, No. 7, pp. 6391-6402, (2019).

[3] S. Jia, F. Hui, S. Li, X. Zhao, and A. J. Khattak, “Long short-term memory and convolutional neural network for abnormal driving behaviour recognition”, IET Intell. Transp. Syst., Vol. 14, No. 5, pp. 306-312, (2019).

[4] J. Zhang, Z. Wu, F. Li, C. Xie, T. Ren, J. Chen, L. Liu, “A deep learning framework for driving behavior identification on in-vehicle CAN-BUS sensor data”, Sensors, Vol. 19, No. 6, p. 1356, (2019).

[5] Y. Xing, C. Lv, H. Wang, H. Wang, Y. Ai, D. Cao, E. Velenis, and F. Y. Wang, “Driver lane change intention inference for intelligent vehicles: framework, survey, and challenges”, IEEE Trans. Veh. Technol., Vol. 68, No. 5, pp. 4377-4390, (2019).

[6] Y. Xing, C. Lv, H. Wang, D. Cao, E. Velenis, and F. Y. Wang, “Driver activity recognition for intelligent vehicles: a deep learning approach”, IEEE Trans. Veh. Technol., Vol. 68, No. 6, pp. 5379-5390, (2019).

[7] W. Bi, M. Cai, M. Liu, and G. Li, “A big data clustering algorithm for mitigating the risk of customer churn”, IEEE Trans. Industr. Inform., Vol. 12, No. 3, pp. 1270-1281, (2016).

[8] K. Krishna, and M. Narasimha Murty, “Genetic k-means algorithm”, IEEE Trans. Syst. Man Cybern. Syst., part B (cybernetics), Vol. 29, No. 3, pp.  433-439, (1999).

[9] D. Aloise, A. Deshpande, P. Hansen, and P. Popat, “NP-hardness of Euclidean sum-of-squares clustering”, Mach. Learn., Vol. 75, No. 2, pp. 245-248, (2009).

[10] A. E. Ezugwu, “Nature-inspired metaheuristic techniques for automatic clustering: a survey and performance study”, SN Appl. Sci., Vol. 2, No. 2, p. 273, (2020).

[11] S. Das, A. Abraham, and A. Konar, “Automatic clustering using an improved differential evolution algorithm”, IEEETrans. Syst. Man Cybern. Syst., Vol. 38, No. 1, pp. 218-237, (2007).

[12] N. Bakhshinezhad, S. A. Mir Mohammad Sadeghi, A. R. Fathi, and H. R. Mohammadi Daniali, “Adaptive particularly tunable fuzzy particle swarm optimization algorithm”, Iran. J. Fuzzy Syst., Vol. 17, No. 1, pp. 65-75, (2020).

[13] W. Wang, J. Xi, and D. Zhao, “Learning and inferring a driver’s braking action in car-following scenarios”, IEEE Trans. Veh. Technol., Vol. 67, No. 5, pp. 3887-3899, (2018).

[14] Q. Guo, Z. Zhao, P. Shen, X. Zhan, and J. Li, “Adaptive optimal control based on driving style recognition for plug-in hybrid electric vehicle”, Energy, Vol. 186, p. 115824, (2019).

[15] C. Lv, Y. Xing, C. Lu, Y. Liu, H. Guo, H. Gao, and D. Cao, “Hybrid-learning-based classification and quantitative inference of driver braking intensity of an electrified vehicle”, IEEETrans. Veh. Technol., Vol. 67, No. 7, pp. 5718-5729, (2018).

[16] K. Nikzadfar, and A. H. Shamekhi, “Investigating a new model-based calibration procedure for optimizing the emissions and performance of a turbocharged diesel engine”, Fuel, Vol. 242, pp. 455-469, (2019).

[17] K. Nikzadfar, and A. H. Shamekhi, “An extended mean value model (EMVM) for control-oriented modeling of diesel engines transient performance and emissions”, Fuel, Vol. 154, pp. 275-292, (2015).

[18] K. Nikzadfar, and A. H. Shamekhi, “Investigating the relative contribution of operational parameters on performance and emissions of a common-rail diesel engine using neural network”, Fuel, Vol. 125, pp. 116-128, (2014).

[19] K. Nikzadfar, and  A. H. Shamekhi, “Development of a hierarchical observer for burned gas fraction in inlet manifold of a turbocharged diesel engine”, IEEE Trans. Veh. Technol., Vol. 67, No. 12, pp. 11500-11510, (2018).

[20] H. Gao, Y. Li, P. Kabalyants, H. Xu, and R. Martinez-Bejar, “A novel hybrid PSO-k-means clustering algorithm using gaussian estimation of distribution method and lévy flight”, IEEE access, Vol. 8, pp. 122848-122863, (2020).

[21] A. Kunz, M. Kunz, H. Vollert, and M. Förster, “Electromechanical brake booster for all drive concepts and automated driving”, ATZWorldw., Vol. 120, No. 4, pp. 58-61, (2018).

[22] T. Leiber, H. Leiber, and A. van Zanten, “Brake boosters for automated driving”, ATZWorldw., Vol. 121, No. 3, pp. 48-53, (2019).

[23] D. Crolla, and B. Mashadi, Vehicle  powertrain systems, John wiley & sons Inc., (2011).

[24] R. T. Sangeetha, V. Shankar, A. Bose, and B. Jayaraman, “A unique approach to optimize the gear-shift map of a compact SUV to improve FE and performance”, SAE Tech. Pap., 2020-01-0969, (2020).

[25] L. Paulraj, S. Muthiah, and S. Chidhanand, “Gear shift pattern optimization for best fuel economy, performance and emissions”,SAE Tech. Pap., 2020-01-1280, (2020).

[26] G. Lucente, M. Montanari, and C. Rossi, “Modelling of an automated manual transmission system”, Mechatronics, Vol. 17, No. 2-3, pp. 73-91, (2007).

[27] K. Nikzadfar, N. Bakhshinezhad, S. A. MirMohammadSadeghi, H. T. Ledari, and A. Fathi, “An optimal gear shifting strategy for minimizing fuel consumption based on engine optimum operation line”, SAE Tech. Pap., 2019-01-5055, (2019).

[28] S. A., MirMohammadSadeghi, K. Nikzadfar, N. Bakhshinezhad, and A. Fathi, “Optimal idle speed control of a natural aspirated gasoline engine using bio-inspired meta-heuristic algorithms”, Automot. Sci. Eng., Vol. 8, No. 3, pp. 2792-2806, (2018).

[29] S. A. Mir Mohammad Sadeghi, S. F. Hoseini, A. Fathi, and H. Mohammadi Daniali, “Experimental hysteresis identification and micro-position control of a shape-memory-alloy rod actuator”, Int. J. Eng., Vol. 32, No. 1, pp. 71-77, (2019).

[30] S.F. Hoseini, S.A. MirMohammadSadeghi, A. Fathi, and H.M. Daniali, “Adaptive predictive control of a novel shape memory alloy rod actuator”, Proc. Inst. Mech. Eng. I., Vol. 235, No. 3, pp. 291-301, (2021).

[31] M. Maghroory, A. Farhadi, and P. Naderi, “Hydraulic anti-lock and anti-skid braking system using fuzzy controller”, J.  Comput.  Appl. Res. Mech. Eng., Vol. 6, No. 1, pp. 21–37, (2016).

[32] J. C. Gerdes, and J. K. Hedrick, “Brake system modeling for simulation and control”, J. Dyn. Syst. Meas. Control, Vol. 121, pp. 496-503, (1999).

[33] C. Lv, J. Zhang, Y. Li, D. Sun, and Y. Yuan, “Hardware-in-the-loop simulation of pressure-difference-limiting modulation of the hydraulic brake for regenerative braking control of electric vehicles”, Proc. Inst. Mech. Eng. D., Vol. 228, No. 6, pp. 649-662, (2014).

[34] J. Zhang, C. Lv, J. Gou, and D. Kong, “Cooperative control of regenerative braking and hydraulic braking of an electrified passenger car”, Proc. Inst. Mech. Eng. D., Vol. 226, No. 10, pp. 1289-1302, (2012).

[35] B. Moaveni, and P. Barkhordari, “Modeling, identification, and controller design for hydraulic anti-slip braking system”, Proc. Inst. Mech. Eng. D., Vol. 233, No. 4, pp. 862-876, (2019).

[36] H. E. Merritt, Hydraulic Control Systems, John wiley & sons Inc., New York, (1967).

[37] C. H. Chou, M. C. Su, E. Lai, "A new cluster validity measure for clusters with different densities", IASTED Int. Conf. Intell. Syst. Control, pp. 276-281, (2003).

[38] D. H. Wolpert, and W. G. Macready, “No free lunch theorems for optimization”, IEEE Trans. Evol. Comput., Vol. 1, No. 1, pp. 67-82, (1997).

[39] SA. MirMohammad Sadeghi, N. Bakhshinezhad, A. Fathi, and H. M. Daniali, “An Optimal Defect-free Synthesis of Four-bar Mechanisms by Using Constrained APT-FPSO Algorithm”, J. Comput. Robot. (JCR), Vol. 12, No. 2, pp. 39-48, (2019).

[40] S. Das, A. Abraham, and A. Konar, Metaheuristic clustering, Springer, Vol. 178, (2009).

[41] M. E. Celebi, H. A. Kingravi, and P. A. Vela, “A comparative study of efficient initialization methods for the k-means clustering algorithm”,Expert Syst. Appl., Vol. 40, No. 1, pp. 200-210, (2013).

[42] A. Papacharalampopoulos, C. Giannoulis, P. Stavropoulos, and D. Mourtzis, “A digital twin for automated root-cause search of production alarms based on KPIs aggregated from IoT”, Appl. Sci., Vol. 10, No. 7, p. 2377, (2020).

[43] G. Mehta, M. Singh, S. Dubey, and Y. Mishra, “Design of Auto-Braking System for Accident Prevention and Accident Detection System Using IoT”, Smart Sens. Industr. Internet of Things, pp. 101-114, (2021).

[44] S.S. Gill, S. Tuli, M. Xu, I. Singh, K.V. Singh, D. Lindsay, S. Tuli, D. Smirnova, M. Singh, U. Jain, and H. Pervaiz, “Transformative effects of IoT, Blockchain and Artificial Intelligence on cloud computing: Evolution, vision, trends and open challenges”, Internet of Things (IOT), Vol. 8, p. 100118, (2019).

[45] M.A. Rahim, M.A. Rahman, M.M. Rahman, A.T. Asyhari, M.Z.A. Bhuiyan, and D. Ramasamy, “Evolution of IoT-enabled connectivity and applications in automotive industry: A review”, Veh. Commun., Vol. 27, p. 100285, (2020).

[46] L. Athanasopoulou,  A. Papacharalampopoulos, P. Stavropoulos, and D. Mourtzis, “Design and manufacturing of a smart mobility platform’s context awareness and path planning module: A PSS approach”, Procedia Manufacturing, Vol. 51, pp. 61-66, (2020).

 

CAPTCHA Image