Document Type : Research Paper


1 HaUI Institute of Technology – HIT, Hanoi University of Industry, Vietnam

2 Science and Technology Department, Hanoi University of Industry, Vietnam

3 Faculty of Mechanical Engineering, Hanoi University of Industry


Cutting force coefficients (CFCs) are the most important factors in the prediction of CFs (CFs) and other machining characteristics (MCs). This study was conducted to model the CFs and MCs in the milling process based on the calculated values of CFCs. From the relationship of average values of CFs and feed rate, CFCs were determined and used to predict dynamic CFs (DCFs) in the flat milling process. In static models, the average values of CFs were presented as a linear regression of feed rate. The DCFs and other MCs were modeled depending on the cutting parameters, cutter geometry, CFCs, and structure parameters of the machine-tool system. By performing the flat-milling process of gray cast iron GG25 using HSS-Co solid tool, the average CFs were modeled as the linear regression of feed rate with large determination coefficients (R2 > 93%). Besides, all CFCs of a pairs of tool and workpiece for each cutting type were successfully determined based on the measured data of CFs from the experimental process. Moreover, the proposed models of DCFs were successfully verified based on the compared results between the predicted CFs and measured CFs in several cutting tests with different cutting parameters. The proposed models of cutting force in this study were successfully used to predict the DCFs and several MCs in milling processes using a flat milling tool. And can be used to design and develop tools and machine in industrial manufacturing.

Graphical Abstract

Modeling of dynamic cutting forces and cutting characteristics based on the analyzed results of average force-feed rate relationship in milling process


[4]  Y. Altintas, Manufacturing Automation: Metal cutting mechanics, machine tool vibrations, and CNC design. Cambridge University Press, 2nd ed, ISBN 978-1-00148-0, (2012).
[25] N. T. Nguyen, Modeling of Machining Dynamics: CFs and Machining Characteristics in Three-Axis Milling Processes. Science and technics publishing House, Hanoi, Vietnam, (2020).