Document Type : Research Paper

Authors

Department of Mechanics, Electrical Power and Computer, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Abstract

As the smart materials, ionic polymer-metal composites (IPMCs), have a layered structure consisting of a polymeric membrane based on perfluorinated alkene, which is sandwiched between two noble metal-based electrodes, such as gold and platinum, and they can be bent significantly under applying a low-range of voltage. IPMCs are used in many applications, such as robotics, biomechanics, and medical purposes. In order to improve the performance of IPMC, in this article, three different anisotropic surface roughening methods with new and optimized fabrication instructions are used, and samples are compared. The experiments are applied to measure three main factors of IPMCs: displacement, blocking force, and lifetime. The results obtained from plasma samples show that the maximum displacement is 36.23 mm, the blocking force is 4.08 etching, 18 percent higher lifetime than micro sandblasting, and sandpaper under applying a voltage range between 1-7 V; as a result, the plasma etched IPMC sample has the most efficiency. 

Graphical Abstract

Investigating the effect of different anisotropic surface roughening methods on ionic polymer metal composites behavior

Keywords

Main Subjects

 
 
 
CAPTCHA Image