Document Type : Research Paper
Authors
1 Faculty of Transport Engineering and Technology, National Institute of Transport, Dar es Salaam, Tanzania
2 African Railway Center of Excellence, Addis Ababa University-Ethiopia
Abstract
The most crucial parts that literally sustain the safety of railroad rolling stock from the subfloor are the wheels. However, during operation, several random parameters can impair their performance, resulting in the train's unsafety. These unpredictable characteristics can lead to fatigue failure, especially in a CHR2 high-speed train. This study aims to analyse the fatigue life of railway wheels for the CHR2 high-speed train due to different random parameters. Three scenarios with random parameters were considered: suspension system, passenger weight, and train speed. A 3D wheel model created by CAD and analyzed with finite element software ANSYS and nCode to validate the model by applying static force. A railway vehicle-track dynamics model with a 30t axle load using the vehicle-track dynamics theory. Then Monte Carlo simulations performed to produce random samples of sensitive parameters and analyze their effect distributions on wheel–rail contact under random wheel parameters. The findings demonstrate that the random parameters of the suspension system have more negative effects on fatigue life compared to random passengers’ weight and train speed, however, random passengers’ weight has a less negative impact compared to random suspension and passenger weight. But also, the dynamic results stress analysis showed that the random suspension system parameters have a high maximum stress compared to the stress obtained from random passengers’ weight and train speed. Moreover, the random suspension system parameters have high maximum stress compared to stress obtained from random passengers’ weight and train speed.
Graphical Abstract
Keywords
Main Subjects
Send comment about this article