Document Type : Research Paper
Authors
Faculty of Mechanical Engineering, University of Kashan, Kashan 8731751167, Iran
Abstract
This paper presents a comparative analytical investigation of five distinct configurations of single-pass flat plate solar air heaters (SAHs), incorporating fins, baffles, porous matrix, and internal air recycling. A steady-state, one-dimensional mathematical model was developed and solved analytically to evaluate both thermal and thermo-hydraulic performance under various mass flow rates and reflux ratios. The results indicate that using a porous matrix alone results in approximately 14% lower thermal efficiency compared to configurations with fins and baffles. Placing the matrix beneath the absorber plate improved thermal efficiency by about 1.5%, but reduced thermo-hydraulic efficiency by roughly 2.5% compared to placing it above. While combining enhancement techniques does not always yield superior performance, the SAH equipped with fins and baffles alone achieved the highest thermal and thermo-hydraulic efficiencies across most conditions. Furthermore, increasing solar radiation intensity and air mass flow rate enhanced useful heat gain, although higher pressure losses caused the thermo-hydraulic efficiency to decline at elevated flow rates. Overall, this study provides valuable insights into the optimal integration of thermal enhancement methods in solar air heaters for improved energy performance.
Graphical Abstract
Keywords
- Solar air heater
- Porous Matrix
- Fin and baffles
- Upstream and downstream recycles
- Thermo-hydraulic efficiency
Main Subjects
Send comment about this article