[1] T. Altan, S. Oh and H. Gegel, Metal forming fundamentals and applications, American Society of Metals, Metals Park, OH, (1979).
[2] E. G. Fisher, Extrusion of Plastics, Wiley, New York, (1976).
[3] M. V. Karwe and Y. Jaluria, “Numerical simulation of thermal transport associated with a continuous moving flat sheet in materials processing”, ASME J. Heat Transfer, Vol. 119, pp. 612–619, (1991).
[4] S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles”, Developments and Applications of Non-Newtonian Flows, Vol. 231, pp. 99‒105, (1995).
[5] L. Godson, B. Raja, D. Mohan Lal and S. Wongwises, “Enhancement of heat transfer using nanofluids‒An overview”, Renewable and Sustainable Energy Reviews, Vol. 14, pp. 629‒641, (2010).
[6] L. Crane, “Flow past a stretching plate”, Z Angew Math Phys, Vol. 21, pp. 645‒651, (1970).
[7] P. S. Gupta and A. S. Gupta, “Heat and Mass transfer on a stretching sheet with suction or blowing”, Can J Chem Eng, Vol. 55, pp. 744‒749, (1977).
[8] F. Ali, R. Nazar, N. Arifin, and I. Pop, “MHD boundary layer flow and heat transfer over a stretching sheet with induced magnetic field”, Heat and Mass Transfer, Vol. 47, pp. 155‒162, (2011).
[9] M. Ashraf and M. M. Ashraf, “MHD stagnation point flow of a micropolar fluid towards a heated surface”, Applied Mathematics and Mechanics, Vol. 32, pp. 45‒54, (2011).
[10] C. Arnold, A. Asir, S. Somasundaram, and T. Christopher, “Heat transfer in a viscoelastic boundary layer flow over a stretching sheet”, International Journal of Heat and Mass Transfer, Vol. 53, pp. 1112‒1118, (2010).
[11] M. Turkyilmazoglu, “Multiple solutions of heat and mass transfer of MHD slip flow for the viscoelastic fluid over a stretching sheet”, International Journal of Thermal Sciences, Vol. 50, pp. 2264‒2276, (2011).
[12] W. A. Khan and I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet”, International Journal of Heat and Mass Transfer, Vol. 53, pp. 2477‒2483, (2010).
[13] O. D. Makinde and A. Aziz, “Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition”, International Journal of Thermal Sciences, Vol. 50, pp. 1326‒1332, (2011).
[14] P. Rana and R. Bhargava, “Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: A numerical study”, Communications in Nonlinear Science and Numerical Simulation, Vol. 17, pp. 212‒226, (2012).
[15] A. Noghrehabadi, R. Pourrajab and M. Ghalambaz, “Effect of partial slip boundary condition on the flow and heat transfer of nanofluids past stretching sheet prescribed constant wall temperature”, International Journal of Thermal Sciences, Vol. 54, pp. 253‒261, (2012).
[16] N. A. Yacob, A. Ishak, I. Pop and K. Vajravelu, “Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid”, Nanoscale research letters, Vol. 6, pp. 314‒321, (2011).
[17] M. A. A. Hamad, “Analytical solution of natural convection flow of a nanofluid over a linearly stretching sheet in the presence of magnetic field”, International Communications in Heat and Mass Transfer, Vol. 38, pp. 487‒492, (2011).
[18] K. Vajravelu, K. V. Prasad, J. Lee, C. Lee, I. Pop and R. A. Van Gorder, “Convective heat transfer in the flow of viscous Ag–water and Cu–water nanofluids over a stretching surface”, International Journal of Thermal Sciences, Vol. 50, pp. 843‒851, (2011).
[19] G. R. Kefayati, S. F. Hosseinizadeh, M. Gorji and H. Sajjadi, “Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid”, International Communications in Heat and Mass Transfer, Vol. 38, pp. 798‒805, (2011).
[20] H. C. Brinkman, “The viscosity of concentrated suspensions and solutions”, J. Chem. Phys., Vol. 20, pp. 571‒581, (1952).
[21] K. Khanafer, and K. Vafai, “Critical synthesis of thermophysical characteristics of nanofluids”, International Journal of Heat and Mass Transfer, Vol. 54, pp. 4410–4428, (2011).
[22] J. C. A. Maxwell, Treatise on Electricity and Magnetism, 2nd ed., Clarendon Press, Oxford, (1881).
[23] H. Chu, Y. Zhao and Y. Liu, “A MAPLE package of new ADM-Padé approximate solution for nonlinear problems”, Applied Mathematics and Computation, Vol. 217, pp. 7074–7091, (2010).
[24] E. Celik and M. Bayram, “Arbitrary order numerical method for solving differential-algebraic equation by Padé series”, J. Applied Mathematics and Computation, Vol. 137, pp. 57–65, (2003).
[25] E. Celik and M. Bayram, “The numerical solution of physical problems modeled as a systems of differential-algebraic equations (DAEs)”, J. of the Franklin Institute, Vol. 342, pp. 1‒6, (2005).
[26] N. Guzel and M. Bayram, “Numerical solution of differential–algebraic equations with index-2”, J. Applied Mathematics and Computation, Vol. 174, pp. 1279–1289, (2006).
[27] N. Guzel and M. Bayram, “On the numerical solution of stiff systems”, Applied Mathematics and Computation, Vol. 170, pp. 230‒236, (2005).
[28] W. Wang, “An algorithm for solving DAEs with mechanization”, Applied Mathematics and Computation, Vol. 167, pp. 1350‒1372, (2005).
[29] E. Celik and M. Bayram, “On the numerical solution of diferential-algebraic equations by Padé series”, Applied Mathematics and Computation, Vol. 137, pp. 151‒160, (2003).
[30] R. L. Burden and J. D. Faires, Numerical analysis, 8th ed., Thomson Higher Education, Belmont, pp. 272‒280, (2004).
[31] C. Y. Wang, “Free convection on a vertical stretching surface”, J. Appl. Math. Mech, Vol. 69, pp. 418‒421, (1989).
[32] R. S. R. Gorla and I. Sidawi, “Free convection on a vertical stretching surface with suction and blowing”, Appl. Sci. Res., Vol. 52, pp. 247‒258, (1994).
Send comment about this article