Document Type : Research Paper

Authors

1 Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Engineering Part of Iman Madar Naslaha Co. (IMEN), Ahvaz, Iran

Abstract

In the present paper, the flow and heat transfer of two types of nanofluids, namely, silver-water and silicon dioxide-water, were theoretically analyzed over an isothermal continues stretching sheet. To this purpose, the governing partial differential equations were converted to a set of nonlinear differential equations using similarity transforms and were then analytically solved. It was found that the magnitude of velocity profiles in the case of SiO2-water nanofluid was higher than that of Ag-water nanofluid. The results showed that the increase of nanoparticle volume fraction increased the non-dimensional temperature and thickness of thermal boundary layer. In both cases of silver and silicon dioxide, increase of nanoparticle volume fraction increased the reduced Nusselt number and shear stress. It was also demonstrated that the increase of the reduced Nusselt number was higher for silicon dioxide nanoparticles than silver nanoparticles. However, the thermal conductivity of silver was much higher than that of silicon dioxide. 

Keywords

Main Subjects

CAPTCHA Image