[1] S. J. Sadowsky, “An overview of treatment considerations for esthetic restorations: a review of the literature”,
The Journal of Prosthetic Dentistry, Vol. 96,No. 6, pp. 433-442, (2006).
[2] S. M. Salazar Marocho, A. R. Studart, M. A. Bottino, and A. Della Bona, “Mechanical strength and subcritical crack growth under wet cyclic loading of glass-infiltrated dental ceramics”,
Dental Materials, Vol. 26,No. 5, pp. 483-490, (2010).
[3] L. A. Bicalho, C. A. R. P. Baptista, R. C. Souza, C. Santos, K. Strecker, and M. J. R. Barboza, “Fatigue and subcritical crack growth in ZrO2–bioglass ceramics”,
Ceramics International, Vol. 39,No. 3, pp. 2405-2414, (2013).
[4] S. K. Vanimisetti and R. Narasimhan, “A numerical analysis of spherical indentation response of thin hard films on soft substrates”,
International Journal of Solids and Structures, Vol. 43,No. 20, pp. 6180-6193, (2006).
[5] C. Ford, M. B. Bush, X.-Z. Hu, and H. Zhao, “Numerical interpretation of cone crack initiation trends in a brittle coating on a compliant substrate”,
Materials Science and Engineering: A, Vol. 380,No. 1-2, pp. 137-142, (2004).
[6] H. Chai, “Fracture mechanics analysis of thin coatings under spherical indentation”,
International Journal of Fracture, Vol. 119,No. 3, pp. 263-285, (2003).
[7] Y. Deng, B. R. Lawn, and I. K. Lloyd, “Characterization of Damage Modes in Dental Ceramic Bilayer Structures”,
Journal of Biomedical Materials Research Part A: Applied Biomaterials, Vol. 63,No. 2, pp. 137-145, (2002).
[8] H. Zhao, X. Hu, M. B. Bush, and B. R. Lawn, “Contact damage in porcelain/Pd-alloy bilayers”,
Journal of Materials Research, Vol. 15,No. 3, pp. 676-682, (2000).
[9] Zhao H, Miranda P, Lawn B R, and Hu X Z, “Cracking in Ceramic/metal/polymer Trilayer Systems”,
Journal of Materials Research, Vol. 17,No. 5, pp. 1102-1111, (2002).
[10] Y. Deng, P. Miranda, A. Pajares, F. Guiberteau, and B. R. Lawn, “Fracture of ceramic/ceramic/polymer trilayers for biomechanical applications”,
Journal of biomedical materials research. Part A, Vol. 67,No. 3, pp. 828-33, (2003).
[11] L. Ma, P. C. Guess, and Y. Zhang, “Load-bearing properties of minimal-invasive monolithic lithium disilicate and zirconia occlusal onlays: finite element and theoretical analyses”,
Dental Materials, Vol. 29,No. 7, pp. 742-751, (2013).
[12] H. Zhao, P. Miranda, B. R. Lawn, and X. Hu, “Cracking in Ceramic/metal/polymer Trilayer Systems”,
Journal of Materials Research, Vol. 17,No. 5, pp. 1102-1111, (2002).
[13] T. Qasim, C. Ford, M. Bongué-Boma, M. B. Bush, and X. Hu, “Effect of coating thickness on crack initiation and propagation in non-planar bi-layers”,
Materials Science and Engineering: A, Vol. 419,No. 1-2, pp. 189-195, (2006).
[14] R. G. Craig and J. M. Powers,
Restorative dental materials, 11 ed., Mosby, St. Louis, USA, (2002).
[15] Y. Zhang and J. W. Kim, “Graded structures for damage resistant and aesthetic all-ceramic restorations”,
Dental materials, Vol. 25,No. 6, pp. 781-790, (2009).
[16] A. Geramy and F. Sharafoddin, “Abfraction: 3D analysis by means of the finite element method”,
Quintessence international, Vol. 34,No. 7, pp. 526-533, (2003).
[17] F. Zarone, D. Apicella, R. Sorrentino, Ferro V, R. Aversa, and A. Apicella, “Influence of tooth preparation design on the stress distribution in maxillary central incisors restored by means of alumina porcelain veneers: a 3D-finite element analysis”,
Dental materials, Vol. 21,No. 12, pp. 1178-1188, (2005).
[18] H. Li, J. Li, Z. Zou, and A. S. Fok, “Fracture simulation of restored teeth using a continuum damage mechanics failure model”,
Dental materials, Vol. 27,No. 7, pp. e125-33, (2011).
[19] S. Mohammadi,
Extended finite element method (for fracture analysis of structures). Blackwell, (2008).
[20] A. Barani, A. J. Keown, M. B. Bush, J. J. W. Lee, H. Chai, and B. R. Lawn, “Mechanics of longitudinal cracks in tooth enamel”,
Acta biomaterialia, Vol. 7,No. 5, pp. 2285-2292, (2011).
[21] A. Barani, A. J. Keown, M. B. Bush, J. J. W. Lee, and B. R. Lawn, “Role of tooth elongation in promoting fracture resistance”,
Journal of the mechanical behavior of biomedical materials, Vol. 8,pp. 37-46, (2012).
[22] B. R. Lawn, H. Chai, A. Barani, and M. B. Bush, “Transverse fracture of canine teeth”,
Journal of Biomechanics, Vol. 46,No. 9, pp. 1561-1567, (2013).
[23] H. Zhao, X. Hu, M. B. Bush, and B. R. Lawn, “Cracking of porcelain coatings bonded to metal substrates of different modulus and hardness”,
Journal of Materials Research, Vol. 16,No. 5, pp. 1471-1478, (2001).
[24] P. Miranda, A. Pajares, F. Guiberteau, F. L. Cumbrera, and B. R. Lawn, “Contact fracture of brittle bilayer coatings on soft substrates”,
Journal of Materials Research, Vol. 16,No. 1, pp. 115-126, (2001).
[25] R. L. Sakaguchi and J. M. Powers,
Craig’s restorative dental materials, 13 ed., Mosby, Philadelphia, USA, (2012).
[26] J. Gong, Y. Chen, and C. Li, “Statistical analysis of fracture toughness of soda-lime glass determined by indentation”,
Journal of non-crystalline solids, Vol. 279,No. 2-3, pp. 219-223, (2001).
[27] T. Qasim, M. B. Bush, and X. Hu, “The influence of complex surface geometry on contact damage in curved brittle coatings”,
International Journal of Mechanical Sciences, Vol. 48,No. 3, pp. 244-248, (2006).
[28] C. Ford, M. B. Bush, and X. Hu, “A numerical study of contact damage and stress phenomena in curved porcelain/glass-filled polymer bilayers”,
Composites Science and Technology, Vol. 64,No. 13, pp. 2207-2212, (2004).
[29] C. Ford, M. B. Bush, X.-Z. Hu, and H. Zhao, “A numerical study of fracture modes in contact damage in porcelain/Pd-alloy bilayers”,
Materials Science and Engineering: A, Vol. 364,No. 1-2, pp. 202-206, (2004).
[30] J. J. W. Lee, Y. Wang, I. K. Lloyd, and B. R. Lawn, “Joining Veneers to Ceramic Cores and Dentition with”,
Journal of Dental Research, Vol. 86,No. 8, pp. 745-748, (2007).
Send comment about this article