[1] A. Tamir, “Processes and phenomena in impinging-stream reactors”, Chemical Engeniring Progrgress, Vol. 85, No. 9, pp. 53-61, (1989).
[2] T. Kudra, A. S. Mujumdar, “Impingement stream dryers for particles and pastes”, Drying Technology, Vol. 7, No. 2, pp. 219-266, (1989).
[3] A. Tamir, Impinging-Stream Reactors: Fundamentals and Applications, Elsevier, Amsterdam, (1994).
[4] S. M. Hosseinalipour, A.S. Mujumdar, “Flow, heat transfer and particle drying characteristics in confined opposing jets: A numerical study”, Drying Technology, Vol. 13, No. 3, pp. 753-781, (1995).
[5] Y. Berman, A. Tamir, “Experimental investigation of phosphate dust collection in impinging streams”, The Canadian Journal of Chemical Engineering, Vol. 74, No. 6, pp. 817-821, (1996).
[6] Y. Berman, A. Tanklevsky, Y. Oren, Tamir A., “Modeling and experimental studies of SO2 absorption in coaxial cylinders with impinging streams: Part I”, Chemical Engineering Science, Vol. 55, No. 5, pp. 1009-1021, (2000).
[7] Y. Berman, A. Tanklevsky, Y. Oren, Tamir A., “Modeling and experimental studies of SO2 absorption in coaxial cylinders with impinging streams: Part II”, Chemical Engineering Science, Vol. 55, No. 5, pp. 1023-1028, (2000).
[8] B. Yao, Y. Berman, A. Tamir, “Evaporative cooling of air in impinging streams”, AIChE Journal, Vol. 41, No. 7, pp. 1667-1675, (1995).
[9] J. C. Roy, C. Bertrand, G. L. Palec, “Numerical and experimental study of mixed and forced convection in a junction”, International Journal of Heat and Mass Transfer, Vol. 37, No. 11, pp. 1985-2006, (1994)
[10] S. M. Hosseinalipour, A. S. Mujumdar, “Flow and Thermal Characteristics of Steady Two-Dimensional Confined Laminar Opposing Jets: Part I. Equal Jets”, International Communication of Heat Mass transfer, Vol. 24, No. 1, pp. 27-38, (1997).
[11] S. M. Hosseinalipour, A. S. Mujumdar, “Flow and Thermal Characteristics of Steady Two-Dimensional Confined Laminar Opposing Jets: Part II. Unequal Jets”,International Communication of Heat and Mass transfer, Vol. 24, No. 1, pp. 39-50, (1997).
[12] S. M. Hosseinalipour, A. S. Mujumdar, , “Comparative evaluation of different turbulence models for confined impinging and opposing jet flows”, Numerical Heat Transfer, Part A: Application, Vol. 28, No. 6, pp. 647- 666, (1995).
[13] S. Devahastin, A. S. Mujumdar, “A numerical study of flow and mixing characteristics of laminar confined impinging streams”,Chemical Engineering Journal, Vol. 85, No. 2-3, pp. 215-223, (2002).
[14] H. J. Poh, K. Kumar, H. S. Chiang, A. S. Mujumdar, “Heat transfer from a laminar impinging jet of a power law fluid”, International Communications in Heat and Mass Transfer, Vol. 31, No. 2, .pp. 241-249, (2004).
[15] A. Chatterjee , S. C. Dhingra , S. S. Kapur, “Laminar impinging jet heat transfer with a purely viscous inelastic fluid”, Numerical Heat Transfer, Part A: Applications, Vol. 42, No. 1-2, pp. 193-213, (2002).
[16] C. Srisamran, C. Devahastin, “Numerical simulation of flow and mixing behavior of impinging streams of shear-thinning fluids”, Chemical Engineering Science, Vol. 61, No. 15, pp. 4884-4892, (2006).
[17] A. Cavadas, F. T. Pinho, J. M. Campos , “Numerical Investigation of the Flow Field in Confined Impinging Jets of Non Newtonian Fluids”, The XVth International Congress on Rheology, pp. 165-167, (2008).
[18] K. F. K. Adane , M. F. Tachie , “PIV study of laminar wall jets of non-Newtonian fluids”, Journal of Fluids Engineering, Transactions of the ASME, Vol. 132, No. 7, pp. 0712011-0712018, (2010).
[19] M. Moradi, G. Etemad, A. Moheb , “Laminar flow heat transfer of pseudoplastic fluid through a double pipe heat exchanger”, Iranian Journal of Chemical Engineering, Vol. 3, No. 2, pp. 13-19, (2006).
[20] A. Kumar, M. Bhattacharya, “Teransient temperature and velocity profile in canned non-Newtonian liquid food during sterilization in a still-cook retort”, International Journal of Heat and Mass Transfer, Vol. 34, No. 7, pp. 1083-1096,(1991).
[21] ANSYS, Ver. 5.4, User Manual, SAS Co, (1998).
Send comment about this article