[1] V. V. Vasiliev, V. A. Barynin, and A. F. Razin, "Anisogrid composite lattice structures-Development and aerospace applications", Composite Structures, Vol. 94, No. 3, pp. 1117-1127, (2012).
[2] V. V. Vasiliev, and A. F. Razin, "Anisogrid composite lattice structures for spacecraft and aircraft applications", Composite Structures, Vol. 76, No. 1-2, pp. 182-189, (2006).
[3] V. V. Vasiliev, V. A. Barynin, A. F. Rasin, S. A. Petrokovskii, and V. I. Khalimanovich, "Anisogrid composite lattice structures-development and space applications", Composite structures, Vol. 3, pp. 38-50, (2009).
[4] H. Fan, F. Jin, and D. Fang, "Characterization of edge effects of composite lattice structures", Composites Science and Technology, Vol. 69, No. 11-12, pp. 1896-1903, (2009).
[5] W. Akl, A. El-Sabbagh, and A. Baz, "Optimization of the static and dynamic characteristics of plates with isogrid stiffeners", Finite Elements in Analysis and Design, Vol. 44, No. 8,pp. 513-523, (2008).
[6] F. R. Gibson, "Energy absorption in composite grid structures", Advanced Composite Materials, Vol. 14, No. 2, pp. 113-119, (2005).
[7] T. D. Kim, "Fabrication and testing of thin composite isogrid stiffened panel", Composite Structures, Vol. 49, No. 1, pp. 21-25, (2000).
[8] P. Jadhav, and P. R. Mantena, "Parametric optimization of grid-stiffened composite panels for maximizing their performance under transverse loading", Composite Structures, Vol. 77, No. 3, pp. 353-363, (2007).
[9] P. Jadhav, and P. R. Mantena, "Impact response and damage evaluation of grid stiffened composite panels", SEM Annual Conference and Exposition on Experimental and Applied Mechanics, USA, (2005).
[10] E. Wodesenbet, S. Kidane, and S. S. Pang, "Optimization for buckling loads of grid stiffened composite panels", Composite Structures, Vol. 60, No. 2, pp. 159-169, (2003).
[11] H. Khosravi, and R. Eslami-Farsani, "On the mechanical characterizations of unidirectional basalt fiber/epoxy laminated composites with 3-glycidoxypropyltrimethoxysilane functionalized multi-walled carbon nanotubes-enhanced matrix", Journal of Reinforced Plastics and Composites, Vol. 35, No. 5, pp. 421-434, (2016).
[12] M. M. Shokrieh, A. Saeedi, and M. Chitsazzadeh, "Evaluating the effects of multi-walled carbon nanotubes on the mechanical properties of chopped strand mat/polyester composites", Materials and Design, Vol. 56, pp. 274-279, (2014).
[13] M. F. Uddin, and C. T. Sun, "Strength of unidirectional glass/epoxy composite with silica nanoparticle-enhanced matrix", Composites Science and Technology, Vol. 68, No. 7-8, pp. 1637-1643, (2008).
[14] A. Chira, A. Kumar, T.V lach, L. Laiblova, A. S. Skapin, and P. Hajek, "Property improvements of alkali resistant glass fibers/epoxy composite with nanosilica for textile reinforced concrete applications", Materials and Design, Vol. 89, pp. 146-155, (2016).
[15] Y. Rostamiyana, A. Fereidoonb, M. Rezaeiashtiyanic, A. H. Mashhadzadeh, and A. Salmankhani, "Experimental and optimizing flexural strength of epoxy-based nanocomposite: Effect of using nano silica and nano clay by using response surface design methodology", Materials and Design, Vol. 69, pp. 96-104, (2015).
[16] S. Jacob, K. K. Suma, J. M. Mendez, and K. E. George, "Reinforcing effect of nanosilica on polypropylene-nylon fiber composite", Materials Science and Engineering: B, Vol. 168, No. 1-3, pp. 245-249, (2010).
[17] L. X. Gong, L. L. Hu, J. Zang, Y. B. Pei, L. Zhao, and L. C. Tang, "Improved interfacial properties between glass fibers and tetra-functional epoxy resins modified with silica nanoparticles", Fibers and Polymers, Vol.16, No. 9,pp. 2056-2065, (2015).
[18] P. Panse, A. Anand, V. Murkute, A. Ecka, R. Harshe, and M. Joshi, "Mechanical properties of hybrid structural composites reinforced with nanosilica", Polymer Composites, Vol. 37, No.4, pp. 1216-1222, (2016).
[19] H. Khosravi, and R. Eslami-Farsani, "An experimental investigation into the effect of surface-modified silica nanoparticles on the mechanical behavior of E-glass/epoxy grid composite panels under transverse loading", Journal of Science and Technology of Composites, Vol. 3, No. 1, pp. 11-20, 2016 (In Persian).
[20] Y. YE, X. Zeng, H. Qiangli, P. Chen, and C. Ye, "Synthesis and characterization of nanosilica/ polyacrylate composite emulsions by sol-gel method and in-situ emulsion polymerization", Journal of Macromolecular Science Part A, Vol. 48, No. 1, pp. 42-46, (2011).
[21] D. K. Shukla, S. V. Kasisomayajula, and V. Parameswaran, "Epoxy composites using functionalized alumina platelets as reinforcements", Composite Science and Technology, Vol. 68, No. 14, pp. 3055-3063, (2008).
[22] N. A. Siddiqui, S. U. Khan and J. K. Kim, "Experimental torsional shear properties of carbon fiber reinforced epoxy composites containing carbon nanotubes", Composite Structures, Vol. 104,pp. 230-238, (2013).
[23] S. Houshyar, A. Shanks, and A. Hodzic, "Modelling of polypropylene fiber-matrix composites using finite element analysis", eXPRESS Polymer Letters, Vol. 3, No. 1, pp. 2-12, (2009).
[24] A. Mirzapour, M. H. Asadollahi, S. Baghshaei, and M. Akbari, "Effect of nanosilica on the microstructure, thermal properties and bending strength of nanosilica modified carbon fiber/phenolic nanocomposite", Composites: Part A, Vol. 63, pp. 159-167, (2014).
[25] R. Eslami-Farsani, S. M. R. Khalili, Z. Hedayatnasab, and N. Soleimani, "Influence of thermal conditions on the tensile properties of basalt fiber reinforced polypropylene-clay nanocomposites", Materials and Design, Vol. 53, pp. 540-549, (2014).
[26] D. R. Bortz, C. Merino, and I. Martin-Gullon,"Mechanical characterization of hierarchical carbon fiber/nanofibercomposite laminates", Composites: Part A, Vol. 42, No. 11, pp. 1584-1591, (2011).
Send comment about this article