[1] Catanach, G. Cuff, Fn. Cogswell, “The Processing of Thermoplastics Containing High Loading of Land and Continuous Reinforcing Fibers”. J. Polym. Engng. , Vol. 6, pp. 345-61, (1986).
[2] Cheng, X. Shan, W. Lu, “Effect of Temperature on Mechanical Behavior of AZ31 Magnesium Alloy”,J. Trans. Nonferrous Met. Soc., Vol. 17, pp. 41-45, (2007).
[3] A. Majlessi, D.Lee, “Deep Drawing of Square-Shaped, Sheet Metal Parts Part1. Fem”. Transaction of ASME; Vol. 115, pp. 102-9, (1993).
[4] A Majlessi, D.Lee, “Development of Multistage Sheet Metal Forming Analysis Method”. J. Mat. Shaping Tech; Vol. 6, pp. 41–54, (1998).
[5] Q. Guo J. L. Batoz J. M. Detraux P. Duroux, “Finite Element Procedures for Strain Estimations of Sheet Metal Forming Parts”. Int. J. Numerical Methods in Engineering; Vol. 30, pp. 1385-401, (1990).
[6] L. Batoz, Y. Guo, F. Mercier, “The Inverse Approach with Simple Triangular Shell Elements for Large Strain Predictions of Sheet Metal Forming Parts”. Engineering Computations; Vol. 15, pp. 864-892, (1998).
[7] Guo, Jl. Batoz, “Recent Developments on the Analysis and Optimum Design of Sheet Metal Forming Parts Using a Simplified Inverse Approach”. Computers and Structures; Vol. 78, pp. 133–48, (2000).
[8] Naceur, A. Delaméziere, J.L. Batoz, Y.Q. Guo, C. Knopf-Lenoir, “Some Improvements on the Optimum Process Design In Deep Drawing Using The Inverse Approach”. J. Materials Processing Technology, Vol. 146, pp. 250–62, (2004).
[9] Azizi, A. Assempur, “Application of Linear Inverse Finite Element Method In Prediction Of The Optimum Blank In Sheet Metal Forming” J. Materials And Design; Vol. 29 , pp. 1965-72, (2008).
[10] Bostan shirin, A. Assempour, “Development of A Multistep Inverse Finite Element Method Based On Unfolding Technique” 20th Annual International Conference on Mechanical Engineering-ISME2012, (2012).
[11] Zamanian, M. Kankarani Farahani, A. Assempour, “Initial Blank Design of Deep Drawn Metal Matrix Composites Using Invers Finite Element Method” 20th Annual International Conference on Mechanical Engineering-ISME2012, (2012).
[12] Q. Liu, J. C. Wang, P. Hu, “The Numerical Analysis Of Anisotropic Sheet Metals In Deep Drawing Processes” J. Material Processing Technology; Vol. 120 , pp. 45-52, (2002).
[13] M. Zaki, A. B. Nassr, M. G. El-Sebaie, “Optimum Blank Shape of Cylindrical Cups in Deep Drawing of Anisotropic Sheet Metals” J. Material Processing Technology; Vol. 76, pp. 203-211, (1998).
[14] P. Correia, G. Ferron, “Wrinkling of Anisotropic Metal Sheets Under Deep-Drawing:Analytical and Numerical Study” J. Material Processing Technology; Vol. 155 , pp. 1604-1610, (2004).
[15] Thuilllier, P. Y. Manach, L. F. Menezes, M. C. Oliveira, “Experimental and Numerical Study of Reverse Re-Drawing of Anisotropic Sheet Metals” J. Material Processing Technology; Vol. 125, pp. 764-771, (2002).
[16] Duchene, A. M. Habraken, “Analysis of the Sensitivity of Fem Predictions to Numerical Parameters in Deep Drawing Simulations” European Journal of Mechanics A/Solids; Vol. 24 , pp. 614–629, (2005).
[17] Salehinia, A. R. Shahani, “Effect of Sheet Anisotropy on the Wear in Deep-Drawing Process of a Cylindrical Cup” International Journal of Mechanical Sciences; Vol. 51, pp. 856–868, (2009).
[18] H. Choi, C. H. Lee, H. Huh, “Sheet Metal Forming Analysis of Planar Anisotropic Materials with A Proper Numerical Scheme for the Blank Holding Force” J. Metals and Materials; Vol. 3 , pp. 408-419, (1998).
[19] Michael Lai, D. Rubin, E. Krempl, “Introduction to Continuum Mechanics”. Oxford: Pergamon Press, (1942).
Send comment about this article