[1] E. Erturk, “Discussions on Driven Cavity Flow”, International Journal for Numerical Methods in Fluids, Vol. 60, No. 3, pp. 275-294, (2009).
[2] M. S. Chandio, M. U. Jhatila, and S. F. Shan, “Finite Element Simulation of Newtonian Lid-Driven Cavity Flow”, Research Journal, Vol. 45, No. 2, pp. 253-262, (2013).
[3] K. Gustafson, “Four principles of vortex motion”, Vortex Methods and Vortex Motion, Eds. K. Gustafson and J. Sethian, SIAM Publications, Philadelphia, pp. 95-141, (1991).
[4] Y. F. Peng, Y. H. Shiau, and R. R. Hwang “Transition in a 2-D Lid-Driven Cavity Flow”, Computers and Fluids, Vol. 32, No. 3, pp. 337-352, (2003).
[5] C. H. Bruneau, and M. Saad, “The 2D Lid Driven Cavity Problem Revisited”, Computers and Fluids, Vol. 35, No. 3, pp. 326-348, (2006).
[6] U. Ghia, K. N. Ghia, and C. T. Shin, “High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multi grid Method”, Journal of Computational Physics, Vol. 48, No. 3, pp. 387-411, (1982).
[7] E. Barragy, and G. F. Carey, “Stream Function-Vorticity Driven Cavity Solutions Using P-Finite Elements”, Computers and Fluids, Vol. 26, No. 5, pp. 453-468, (1997).
[8] P. S. B. Zdanski, M. A. Ortega, and N. G. C. R. Fico, “Numerical Study of the Flow Over Shallow Cavities”, Computers and Fluids, Vol. 32, No. 7, pp. 953-974, (2003).
[9] D. S. Kumar, K. S. Kumar, and M. K. Das, “A Fine Grid Solution for a Lid-Driven Cavity Flow Using Multigrid Method”, Engineering Applications of Computational Fluid Mechanics, Vol. 3, No. 3, pp. 336-354, (2009).
[10] N. P. Moshkin, and K. Poochinapan, “Novel finite difference scheme for the numerical solution of two-dimensional incompressible Navier-Stokes equations”, International Journal Of Numerical Analysis And Modeling, Vol. 7, No. 2, pp. 321-329, (2010).
[11] K. Poochinapan, “Numerical implementations for 2-d lid-driven cavity flow in stream function formulation”, ISRN Applied Mathematics, Vol. 2012, Article ID: 871538, 17 pp, (2012).
[12] K. Yapici, and Y. Uludag, “Finite volume simulation of 2-d steady square lid driven cavity flow at high Reynolds numbers”, Brazilian Journal of Chemical Engineering, Vol. 30, No. 4, pp. 923-937, (2013).
[13] K. M. Salah Uddin, and L. K. Saha, “Numerical solution of 2-d incompressible driven cavity flow with wavy bottom surface”, American Journal of Applied Mathematics, Vol. 3, No. 1-1, pp. 30-42, (2015).
[14] L. Marioni, F. Bay, and E. Hachem, “Numerical stability analysis and flow simulation of lid-driven cavity subjected to high magnetic field”, Physics of Fluids, Vol. 28, Article ID 057102, 16 pp, (2016).
[15] D. C. Wan, Y. C. Zhou, and G. W. Wei, “Numerical solution of incompressible flows by discrete singular convolution”, International Journal For Numerical Methods In Fluids, Vol. 38, No. 8, pp. 789-810, (2002).
[16] B. E. Launder, and D. B. Spalding, “The Numerical Computation of Turbulent Flows”, Computer Methods in Applied Mechanics and Engineering, Vol. 3, No. 2, pp. 269-289, (1974).
[17] E. Erturk, T. C. Corke, and C. Gokcol, “Numerical Solutions of 2-D Steady Incompressible Driven Cavity Flow at High Reynolds Numbers”, International Journal For Numerical Methods In Fluids, Vol. 48, No. 7, pp. 747-774, (2005).
[18] E. Erturk, and C. Gokcol, “Fourth Order Compact Formulation of Navier- Stokes Equations and Driven Cavity Flow at High Reynolds Numbers”, International Journal For Numerical Methods In Fluids, Vol. 50, No. 4, pp. 421-436, (2006).
Send comment about this article