[1] M. Ozturk, F. Erdogan, An Axisymmetric Crack in Bonded Materials With a Nonhomogeneous Interfacial Zone Under Torsion, Journal of Applied Mechanics, Vol. 62, No. 1, pp. 116-125, (1995).
[2] W. Xuyue, Z. Zhenzhu, W. Duo, On the penny-shaped crack in a nonhomogeneous interlayer of adjoining two different elastic materials, International Journal of Solids and Structures, Vol. 34, pp. 3911-3921, (1997).
[3] W. Xuyue, Z. Zhenzhu, W. Duo, On the penny-shaped crack in a non-homogeneous interlayer under torsion, International Journal of Fracture, Vol. 82 No. 4, pp. 335-343, (1996).
[4] H. T. Danyluk, B. M. Singh, Problem of an infinite solid containing a flat annular crack under torsion, Engineering Fracture Mechanics, Vol. 24, No. 1, pp. 33-38, (1986).
[5] H. S. Saxena, R. S. Dhaliwal, W. He, J. G. Rokne, Penny-shaped interface crack between dissimilar nonhomogeneous elastic layers under axially symmetric torsion, Acta Mechanica, Vol. 99, No. 1, pp. 201-211, (1993).
[6] H. K. Hemed, R.S. Dhaliwal, Penny-shaped interface crack in a non-homogeneous multilayered medium under axially symmetric torsion, ZAMM - Journal of Applied Mathematics and Mechanics, Vol. 81, No. 3, pp. 205-211, (2001).
[7] H. Fildiş, O. S. Yahşi, The mode III axisymmetric crack problem in a non-homogeneous interfacial region between homogeneous half-spaces, International Journal of Fracture, Vol. 85, pp. 35-45, (1997).
[8] I. Demir, T. A. Khraishi, The Torsional Dislocation Loop and Mode III Cylindrical Crack, Journal of Mechanics, Vol. 21, No. 1, pp. 109-116, (2011).
[9] Y. Godin, The interaction between a penny-shaped crack and a spherical inclusion under torsion, Zeitschrift für angewandte Mathematik und Physik ZAMP, Vol. 46, No. 6, pp. 932-945, (1995).
[10] S. S. Chang, The general solution of a finite cylinder with a concentric penny-shaped crack under torsion, Engineering Fracture Mechanics, Vol. 22, No. 4, pp. 571-578, (1985).
[11] X. S. Zhang, The general solution of a finite orthotropic cylinder with a concentric penny-shaped crack under torsion, Engineering Fracture Mechanics, Vol. 31, No. 5, pp. 827-835, (1988).
[12] X. S. Zhang, Y. U. Zhang, A concentric penny-shaped crack off the middle plane of a finite orthotropic cylinder under torsional shear stress, Engineering Fracture Mechanics, Vol. 31, No. 3, pp. 385-393, (1988).
[13] X. S. Zhang, Off-plane concentric penny-shaped crack in a finite cylinder under arbitrary torsion, Theoretical and Applied Fracture Mechanics, Vol. 9, No. 3, pp. 263-270, (1988).
[14] B. Liang, X. S. Zhang, The problem of a concentric penny-shaped crack of mode III in a nonhomogeneous finite cylinder, Engineering Fracture Mechanics, Vol. 42, No. 1, pp. 79-85, (1992).
[15] H. Xue-Li, W. Duo, A circular or ring-shaped crack in a nonhomogeneous cylinder under torsional loading, International Journal of Fracture, Vol. 68, No. 3, pp. R79-R83, (1994).
[16] T. Akiyama, T. Hara, T. Shibuya, Torsion of an Infinite Cylinder with Multiple Parallel Circular Cracks, Theoretical and Applied Mechanics Letters, Vol. 50, pp. 137-143, (2001).
[17] P. Malits, Torsion of a cylinder with a shallow external crack, International Journal of Solids and Structures, Vol. 46, No. 16, pp. 3061-3067, (2009).
[18] A. N. Zlatin, Y. S. Uflyand, Torsion of an elastic cylinder slackened by an external circular notch II. The case of a finite cylinder, Journal of Elasticity, Vol. 13, No. 2, pp. 215-223, (1983).
[19] I. N. Zlatina, Application of dual integral equations to the problem of torsion of an elastic space, weakened by a conical crack of finite dimensions, Journal of Applied Mathematics and Mechanics, Vol. 36, No. 6, pp. 1062-1068, (1972).
[20] H. Z. Hassan, Torsion of a non-homogeneous infinite elastic cylinder slackened by a circular cut, Journal of Engineering Mathematics, Vol. 30, No. 5, pp. 547-555, (1996).
[21] S. Kazuyoshi, S. Toshikazu, K. Takashi, The torsion of an infinite hollow cylinder with an external crack, International Journal of Engineering Science, Vol. 16, No. 10, pp. 707-715, (1978).
[22] T. Shibuya, T. Koizumi, T. Okuya, The Axisymmetric Stress Field in an Infinite Solid Cylinder with an External Crack under Torsion, Bulletin of JSME, Vol. 22, No. 249, pp. 1049-1052, (1979).
[23] R. T. Faal, S. J. Fariborz, H. R. Daghyani, Antiplane deformation of orthotropic strips with multiple defects, Journal of Mechanics of Materials and Structures, Vol. 1, No. 7, pp. 1097-1114, (2006).
[24] F. Erdogan, G. D. Gupta, T. S. Cook, Numerical solution of integral equations. In: Sih, G. C. (Ed.), Methods of Analysis and Solution of Crack Problems, Noordhoof, Leyden, Holland, (1973).
[25] J. Q. Tarn, Y. M. Wang, Fundamental solutions for torsional problems of a cylindrical anisotropic elastic medium, Journal of the Chinese Institute of Engineers, Vol. 9, No. 1, pp. 1-8, (1986).
[26] W. Magnus, F. Oberhettinger, R. P. Soni, Formulas and theorems for the special functions of mathematical physics, Berlin, (1966).
[27] E. Asadi, S. J. Fariborz, M. Ayatollahi, Analysis of multiple axisymmetric annular cracks, Journal of Mechanics of Materials and Structures, Vol. 4, No. 1, pp. 1-11, (2009).
[28] D. A. Hills, P. A. Kelly, D. N. Dai, A. M. Korsunsky, Solution of Crack Problems: The Distributed Dislocation Technique, Springer, (1996).
[29] I. N. Sneddon, M. Lowengrub, Crack problems in the classical theory of elasticity, Wiley, (1969).
[30] I. Choi, R. T. Shield, A note on a flat toroidal crack in an elastic isotropic body, International Journal of Solids and Structures, Vol. 18, No. 6, pp. 479-486, (1982).
[31] J. P. Benthem, W. T. Koiter, Asymptotic approximations to crack problems, in: G. Sih (Ed.) Methods of analysis and solutions of crack problems, Springer Netherlands, pp. 131-178, (1973).
[32] W. Qizhi, SIF solutions of a cylinder with a concentric penny-shaped crack under various loading conditions, International Journal of Fracture, Vol. 74, pp. R65-R70, (1995).
[33] B. A. Kudriavtsev, V. Z. Parton, Torsion and extension of a cylinder with an external annular slit, Journal of Applied Mathematics and Mechanics, Vol. 37, No. 2, pp. 297-306, (1973).
Send comment about this article