Meshless Numerical Methods
R. Shamsoddini; B. Abolpour
Abstract
One of the main problems in liquid transfer tanks is the sloshing phenomenon. This phenomenon, which is associated with regular or irregular liquid waves inside the tank, can cause many risks. One of the most widely applied methods to control the fluctuations caused by the sloshing phenomenon is the ...
Read More
One of the main problems in liquid transfer tanks is the sloshing phenomenon. This phenomenon, which is associated with regular or irregular liquid waves inside the tank, can cause many risks. One of the most widely applied methods to control the fluctuations caused by the sloshing phenomenon is the use of baffles. Baffles are usually installed vertically or horizontally on the inner wall of the tank. In uniform samples (simple baffle), the hydrodynamic force on the baffle is significant. Therefore, in this research, mesh baffle from the category of permeable baffles is introduced and tested, which can significantly reduce the hydrodynamic forces on the baffle. Therefore, in the present work, the sloshing phenomenon in a rectangular tank is first modeled by smoothed particle hydrodynamics and validated. Then, the tank with a simple baffle and mesh baffle are modeled and examined. During the numerical solution (in each time interval), the hydrodynamic forces acting on the baffles are monitored and extracted. The comparison of the obtained results shows that in addition to reducing the fluctuations of the sloshing phenomenon, the mesh baffle also creates a lower hydrodynamic resistance force.
Fluid Mechanics
Rahim Shamsoddini
Abstract
Liquid sloshing is a common phenomenon in the transporting of liquid tanks. Liquid waves lead to fluctuating forces on the tank wall. If these fluctuations are not predicted or controlled, they can lead to large forces and momentum. Baffles can control liquid sloshing fluctuations. One numerical method, ...
Read More
Liquid sloshing is a common phenomenon in the transporting of liquid tanks. Liquid waves lead to fluctuating forces on the tank wall. If these fluctuations are not predicted or controlled, they can lead to large forces and momentum. Baffles can control liquid sloshing fluctuations. One numerical method, widely used to model the liquid sloshing phenomena is Smoothed Particle Hydrodynamics (SPH). Because of its Lagrangian nature, SPH is suitable for simulating free surface flow. In the present study, a relatively accurate Incompressible SPH (ISPH) method improved by kernel gradient correction tensors, particle shifting algorithms, turbulence viscosity calculations, and free surface particle detectors is applied for the free surface flow modeling. In comparison to the other SPH Simulations and experimental data, these results show that the present algorithm is effective for simulating free surface problems. The present algorithm has been applied to simulate liquid sloshing phenomena, while the aim of this study is the investigation of vertical and horizontal baffle effects on the control and damping of liquid sloshing. Results show that for vertical baffles, baffle size has a major role in sloshing fluctuation damping. For horizontal baffles, also including size, the baffle base position has a significant role in liquid sloshing fluctuation damping. When horizontal baffle is near the free surface, sloshing fluctuation-damping increases.