mohammad shareef; mohammad shareef
Abstract
This study analyses the combined effect of chemical reaction and Soret number on MHD flow of a viscous and incompressible fluid near the exponentially accelerated infinite vertical plate in a rotating system. The fluid under consideration is electrically conducting and the medium is porous. A set of ...
Read More
This study analyses the combined effect of chemical reaction and Soret number on MHD flow of a viscous and incompressible fluid near the exponentially accelerated infinite vertical plate in a rotating system. The fluid under consideration is electrically conducting and the medium is porous. A set of dimensionless governing equations of the model is obtained. As the equations are linear, an exact solution is derived by using Laplace technique. The effects of flow parameters on the concentration, temperature and velocity are discussed through graphs. It is noticed that the components of the velocity in both the directions can be increased by increasing the Soret number; and the velocities can be reduced by increasing the chemical reaction parameter. Tables depict the numerical values of the rate of change of momentum, concentration and temperature. Applications of the study are considered in the fields like solar plasma and planetary fluid dynamics systems, rotating MHD generators, etc.
Heat and Mass Transfer
Vasu B; Atul Kumar Ray
Abstract
This study aims to numerically investigate a two dimensional and steady heat transfer over a cylinder in a porous medium with suspending nanoparticles. Buongiorno model is adopted for nanofluid transport on a free convection flow taking the slip mechanism of Brownian motion and thermophoresis into account. ...
Read More
This study aims to numerically investigate a two dimensional and steady heat transfer over a cylinder in a porous medium with suspending nanoparticles. Buongiorno model is adopted for nanofluid transport on a free convection flow taking the slip mechanism of Brownian motion and thermophoresis into account. The Boussinesq approximation is considered to account for buoyancy. The boundary layer conservation equations are transformed into dimensionless and then elucidated using a robust Keller-box implicit code numerically. The numerical results are displayed graphically and deliberated quantitatively for various values of thermo-physical parameters. Our results shows that, increasing the Forchheimer parameter, Λ, clearly swamps the nanofluid momentum development, decreases the flow for some distance near the cylinder viscous region, later it reverses the trend, and asymptotically reaches the far field flow velocity. Furthermore, as thermophoresis parameter increases, the heat transfer and nanoparticle volume concentration increase within the boundary layer. The present results are validated with the available results of a similar study and is found to be in good coincidence. The study finds applications in heat exchangers technology, materials processing, and geothermal energy storage etc.
Fluid Mechanics
Neetu Kanaujia; Uday Singh Rajput
Abstract
Unsteady flow with magneto-hydrodynamics and heat generation through porous medium past an impulsively started vertical plate with constant wall temperature and mass diffusion is considered here. The effect studied is a combination of Hall current and chemical reaction. The motivation behind this study ...
Read More
Unsteady flow with magneto-hydrodynamics and heat generation through porous medium past an impulsively started vertical plate with constant wall temperature and mass diffusion is considered here. The effect studied is a combination of Hall current and chemical reaction. The motivation behind this study is the applications of such kind of problems in industry. In many industrial applications electrically conducting fluid is subjected to magnetic field. The fluid is passed through porous medium. The flow may be on a plate. There may be substance on the plate which may cause chemical reaction. The solution of flow model studied here is obtained by using Laplace transform method. The respective profiles have been drawn for velocity. The numerical data have been obtained using latest software techniques available. The profiles have been analyzed and discussed. The values of Nusselt number, Sherwood number, and drag on plate have been tabulated for analysis. The findings have been summarized in conclusion section.
Heat and Mass Transfer
L. Ramamohan Reddy; M. C. Raju; G. S. S. Raju; S. M. Ibrahim
Abstract
The paper aims at investigating the effects of chemical reaction and thermal radiation on the steady two-dimensional laminar flow of viscous incompressible electrically conducting micropolar fluid past a stretching surface embedded in a non-Darcian porous medium. The radiative heat flux is assumed to ...
Read More
The paper aims at investigating the effects of chemical reaction and thermal radiation on the steady two-dimensional laminar flow of viscous incompressible electrically conducting micropolar fluid past a stretching surface embedded in a non-Darcian porous medium. The radiative heat flux is assumed to follow Rosseland approximation. The governing equations of momentum, angular momentum, energy, and species equations are solved numerically using Runge-Kutta fourth order method with the shooting technique. The effects of various parameters on the velocity, microrotation, temperature and concentration field as well as skin friction coefficient, Nusselt number and Sherwood number are shown graphically and tabulated. It is observed that the micropolar fluid helps the reduction of drag forces and also acts as a cooling agent. It was found that the skin-friction coefficient, heat transfer rate, and mass transfer rate are decreased, and the gradient of angular velocity increases as the inverse Darcy number, porous medium inertia coefficient, or magnetic field parameter increase. Increases in the heat generation/absorption coefficient caused increases in the skin-friction coefficient and decrease the heat transfer rate. It was noticed that the increase in radiation parameter or Prandtl number caused a decrease in the skin-friction coefficient and an increase in the heat transfer rate. In addition, it was found that the increase in Schmidt number and chemical reaction caused a decrease in the skin-friction coefficient and an increase in the mass transfer rate.
Heat and Mass Transfer
S. Mohammed Ibrahim; K. Suneetha
Abstract
The present paper was aimed to study the effects of variable thermal conductivity and heat generation on the flow of a viscous incompressible electrically conducting fluid in the presence of a uniform transverse magnetic field, thermal radiation, porous medium, mass transfer, and variable free stream ...
Read More
The present paper was aimed to study the effects of variable thermal conductivity and heat generation on the flow of a viscous incompressible electrically conducting fluid in the presence of a uniform transverse magnetic field, thermal radiation, porous medium, mass transfer, and variable free stream near a stagnation point on a non-conducting stretching sheet. Equations of continuity, momentum, energy, and mass were transformed into ordinary differential equations and solved numerically using shooting method. Velocity, temperature, and concentration distributions were numerically discussed and presented in the graphs. Skin-friction coefficient, the Nusselt number, and Sherwood number on the sheet were derived and discussed numerically. Their numerical values for various values of physical parameters were presented in the tables. It was found that temperature increased with increasing radiation parameter, R, and concentration decreased with increasing the Schmidt number, Sc. The numerical predications were compared with the existing information in the literature and a good agreement was obtained.