Fracture Mechanics
M. Shariati; A. M. Majd Sabeti; H. Gharooni
Abstract
Existence of cracks in industrial structures is one of the important causes of their failure, especially when they are subjected to important axial compressive forces that might lead to buckling. Therefore, it must be considered in stress analysis and designing and loading of such structures. In this ...
Read More
Existence of cracks in industrial structures is one of the important causes of their failure, especially when they are subjected to important axial compressive forces that might lead to buckling. Therefore, it must be considered in stress analysis and designing and loading of such structures. In this paper, the buckling and post-buckling behaviors of stainless-steel cracked plates under axial compression load were investigated both experimentally and numerically and effects of the geometrical and mechanical parameters, such as crack length, crack angle, crack position, plate imperfection, load band, and plate thickness on the critical buckling load were studied. In the experimental study, mechanical properties and plastic behavior of stainless steel plates were determined for the subsequent numerical study. Numerical modeling was carried out by ABAQUS finite element software. Numerical predictions were compared with the experimental results and the reliability of the numerical solution was proven. Results demonstrated the considerable effects of the mentioned parameters on the critical buckling load of plate.
Plates and Shells
Abdolhossein Fereidoon; Kamal Kolasangiani; Amin Akbarpour; Mahmoud Shariati
Abstract
In this paper, simulation and analysis of thin steel cylindrical shells with elliptical cutouts under oblique loading were studied using finite element method. First, the numerical results were validated by the results of experimental test performed by an INSTRON 8802 servo hydraulic machine. Also, the ...
Read More
In this paper, simulation and analysis of thin steel cylindrical shells with elliptical cutouts under oblique loading were studied using finite element method. First, the numerical results were validated by the results of experimental test performed by an INSTRON 8802 servo hydraulic machine. Also, the effect of cutout angle (θ), cutout size, cutout position (L0/L) and cutout aspect ratios (b/a) were investigated, where parameter (a) shows size of the cutout along longitudinal axis of the cylinder, parameter (b) is size of the cutout in circumferential direction of the cylinder on the buckling and post-buckling behavior of cylindrical shells with finite element method. It can be concluded that increasing width of the cutout extremely decreased the buckling load while the cutout height was constant. Moreover, changing position of the cutout from the mid-height of the shell toward the edges increased the buckling load.