Welding
Satish S Chinchanikar; Vaibhav S Gaikwad
Abstract
Researchers have worked on many facets of joining of similar/dissimilar aluminum alloys using different joining techniques and came up with their own recommendations. Friction Stir Welding (FSW) is widely preferred for joining aluminum alloys being an economical alternative to produce high-quality welds. ...
Read More
Researchers have worked on many facets of joining of similar/dissimilar aluminum alloys using different joining techniques and came up with their own recommendations. Friction Stir Welding (FSW) is widely preferred for joining aluminum alloys being an economical alternative to produce high-quality welds. However, obtaining high strength welded joints without the detrimental and visible effects still needs attention considering the effect of hybrid FSW techniques, tool material and geometry, process parameters (tool rotation, welding speed, and plunge depth), and post welding treatments. This study presents the state of the art with the authors’ own inferences on the evaluation of FSW performances in terms of joint tensile strength, fatigue strength, corrosion resistance, residual stresses, microstructure, and microhardness. This study also presents attempts made by the researchers on modeling and parametric optimization of FSW to finding scope for application of advanced optimization techniques and development of predictive models for mechanical properties of welded joints. This study emphasizes more studies required on the comparative evaluation of FSW performance with the application of ultrasonic frequency combinedly or individually on advancing and retreating sides of plates.
Welding
Saadat Ali Rizvi; S P Tewari
Abstract
This study investigated the optimization of three welding parameters (wire feed speed, arc voltage, and shielding gas flow rate) for SS 304H by using Taguchi based Grey relational analysis. In this research work, pure argon was used as shielding gas. Numbers of trials were performed as per ...
Read More
This study investigated the optimization of three welding parameters (wire feed speed, arc voltage, and shielding gas flow rate) for SS 304H by using Taguchi based Grey relational analysis. In this research work, pure argon was used as shielding gas. Numbers of trials were performed as per L16 (4xx3) orthogonal array design and the mechanical quality such ultimate tensile strength, microhardness, Toughness, and microstructure of SS304H optimized by Grey-based Taguchi analysis and result shows that the optimal parameters combination were as A4B4C3 i.e. flow rate at 23L/min, voltage at 25 V and welding speed at 350IPM and it was observed that wire feed speed had the most significant effect followed by voltage and gas flow rate. An optimal combined parameter of the welding operation was obtained via Grey relational analysis. By analyzing Grey relational grade matrix, the degree of influence for each controllable process factor onto individual quality targets can be found.
Welding
M. Azizpour; M. Ghoreishi; A. Khorram
Abstract
This paper was aimed to report the 3D finite element analysis simulation of laser welding process of Ti6Al4V 1.7 mm sheets in butt joint in order to predict the temperature distribution, hardness, and weld geometry. The butt-joint welds were made using CO2 laser with the maximum power of 2.2 kW in the ...
Read More
This paper was aimed to report the 3D finite element analysis simulation of laser welding process of Ti6Al4V 1.7 mm sheets in butt joint in order to predict the temperature distribution, hardness, and weld geometry. The butt-joint welds were made using CO2 laser with the maximum power of 2.2 kW in the continuous wave mode. A part of the experimental work was carried out to verify the weld geometry with specific weld parameters including power, speed, and focal position. Another part investigated the effect of focal position on the weld bead geometry. Subsequently, the shapes of the molten pool were predicted by the numerical analysis method and compared with the results obtained through the experimentation, which led to finding a good agreement.
Welding
Saman Khalilpourazary; Reza Abdi Behnagh; Ramezanali Mahdavinejad; Nasib Payam
Abstract
This study focused on the optimization of Al—Mg to CuZn34 friction stir lap welding (FSLW) process for optimal combination of rotational and traverse speeds in order to yield favorable fracture load using Grey relational analysis (GRA). First, the degree of freedom was calculated for the system. ...
Read More
This study focused on the optimization of Al—Mg to CuZn34 friction stir lap welding (FSLW) process for optimal combination of rotational and traverse speeds in order to yield favorable fracture load using Grey relational analysis (GRA). First, the degree of freedom was calculated for the system. Then, the experiments based on the target values and number of considered levels, corresponding orthogonal array, Grey relational coefficient and Grey relational grade were performed. In the next step, Grey relational graph of each level was sketched. The performed graph and analysis of Grey results proved the impact of rotational speed and traverse speed on fracture load of resultant joints. Finally, the optimum amount of each parameter for better strength of the welds was obtained. This study showed feasibility of the application of Grey relational analysis for achieving dissimilar friction stir lap welds with the highest quality.
Welding
Kondapalli Siva Prasad; Chalamalasetti Srinivasa Rao; Damera Nageswara Rao
Abstract
Austenitic stainless steel sheets have gained wide acceptance in the fabrication of components, which require high temperature resistance and corrosion resistance such as metal bellows used in expansion joints in aircraft, aerospace and petroleum industries. In the case of single pass welding of thinner ...
Read More
Austenitic stainless steel sheets have gained wide acceptance in the fabrication of components, which require high temperature resistance and corrosion resistance such as metal bellows used in expansion joints in aircraft, aerospace and petroleum industries. In the case of single pass welding of thinner sections of this alloy, Pulsed Current Micro Plasma Arc Welding (PCMPAW) has been found beneficial due to its advantages over the conventional continuous current process. This paper highlighted development of empirical mathematical equations using multiple regression analysis, correlating various process parameters to pitting corrosion rates in PCMPAW of AISI 304L sheets in 1 Normal HCl. The experiments were conducted based on a five factor, five level central composite rotatable design matrix. The model adequacy was checked by Analysis of Variance (ANOVA). The main effects and interaction effects of the welding process parameters on pitting corrosion rates of the welded joints were studied using surface and contour plots. From the contour plots, it was understood that peak current was the most influencing factor on the pitting corrosion rate. The optimum pitting corrosion rate was achieved at peak current of 6 Amperes, base current of 4 Amperes, pulse rate of 40 pulses/second and pulse width of 50 % .