Forming
Amir Hossein Rabiee; Ehsan Sherkatghanad; Ali Zeinolabedin Beygi; Hassan Moslemi Naeini; Lihui Lang
Abstract
In this paper, by considering the processing parameters, including blank holder force, blank holder gap, and cavity pressure as the most important input factors in the hydroforming process, an experimental design is performed, and an adaptive neural-fuzzy inference system (ANFIS) is applied to model ...
Read More
In this paper, by considering the processing parameters, including blank holder force, blank holder gap, and cavity pressure as the most important input factors in the hydroforming process, an experimental design is performed, and an adaptive neural-fuzzy inference system (ANFIS) is applied to model and predict the behavior of aluminum thinning rate (upper layer and lower layer), the height of wrinkles and achieved depths that are extracted in hydroforming process. Also, the optimal constraints of the network structure are obtained by the gray wolf optimization algorithm. Accordingly, the results of experimental tests are utilized for training and testing of the ANFIS. The accurateness of the attained network is examined using graphs and also based on the statistical criteria of root mean square error, mean absolute error, and correlation coefficient. The results show that the attained model is very effective in approximating the aluminum thinning rate (upper layer and lower layer), the height of wrinkles, and achieved depth in the hydroforming process. Finally, the results also show that the root means of the square error of aluminum thinning rate (upper layer and lower layer), the height of wrinkles, and achieved depth of the test section are 1.67, 2.25, 0.05, and 2.67, respectively. It is also observed that the correlation coefficient for the test data is very close to 1, which demonstrates the high precision of the ANFIS in predicting the outputs of the hydroforming procedure.
Forming
Mehdi Bostan Shirin; Ramin Hashemi; Ahmad Assempour
Abstract
An enhanced unfolding Inverse Finite Element Method (IFEM) has been used together with an extended strain-based forming limit diagram (EFLD) to develop a fast and reliable approach to predict the feasibility of the deep drawing process of a part and determining where the failure or defects can occur. ...
Read More
An enhanced unfolding Inverse Finite Element Method (IFEM) has been used together with an extended strain-based forming limit diagram (EFLD) to develop a fast and reliable approach to predict the feasibility of the deep drawing process of a part and determining where the failure or defects can occur. In the developed unfolding IFEM, the meshed part is properly fold out on the flat sheet and treated as a 2D problem to reduce the computation time. The large deformation relations, nonlinear material behavior and friction conditions in the blank holder zone have also been considered to improve the accuracy and capability of the proposed IFEM. The extended strain-based forming limit diagram based on the Marciniak and Kuczynski (M-K) model has been computed and used to predict the onset of necking during sheet processing. The EFLD is built based on equivalent plastic strains and material flow direction at the end of forming. This new forming limit diagram is much less strain path dependent than the conventional forming limit diagram. Furthermore, the use and interpretation of this new diagram are easier than the stress-based forming limit diagram. Finally, two applied examples have been presented to demonstrate the capability of the proposed approach.
Forming
Mohammad Honarpisheh; Ahmad Gheysarian
Abstract
Single point incremental sheet metal forming is a sheet metal forming process that forms products without the complex dies and tools with low cost. In this study, the incremental sheet metal forming process has been experimentally investigated on the explosively-welded Al/Cu bimetal sheets. Also, the ...
Read More
Single point incremental sheet metal forming is a sheet metal forming process that forms products without the complex dies and tools with low cost. In this study, the incremental sheet metal forming process has been experimentally investigated on the explosively-welded Al/Cu bimetal sheets. Also, the effects of process parameters, such as arrangement of layer`s bimetal, tool diameter and tool path were investigated on the forming force, thickness distribution, formability and roughness. At first, the bimetals were produced by explosive welding process. Then, two tool diameters, step and spiral tool paths and layer arrangement were chosen as input parameters. The results showed that the forming force increases with increasing the tool diameter and using aluminum as a top layer (contact with tool). Also, using spiral tool path increases the average forming force and decreases the maximum thickness changing. The formability increases with increasing the tool diameter and using the copper as top layer with spiral tool path.
Forming
S. Izadpanah; S. H. Ghaderi; M. Gerdooei
Abstract
This paper investigates the earing phenomenon in deep drawing of AA3105 aluminum alloy, experimentally and numerically. Earing defect is mainly attributed to the plastic anisotropy of sheet metal. In order to control such defect, predicting the evolution of ears in sheet metal forming analyses becomes ...
Read More
This paper investigates the earing phenomenon in deep drawing of AA3105 aluminum alloy, experimentally and numerically. Earing defect is mainly attributed to the plastic anisotropy of sheet metal. In order to control such defect, predicting the evolution of ears in sheet metal forming analyses becomes indispensable. In this regard, the present study implements the advanced yield criterion BBC2003. Based on this yield function and the associated flow rule of plasticity, the constitutive model is derived. Accordingly, a user material VUMAT subroutine is developed and adopted in the commercial finite element software ABAQUS/Explicit. Several plane stress loading problems are designed, through which, the accuracy of the developed subroutine is verified. In addition, cylindrical cups of AA3105 aluminum alloy are fabricated using a deep drawing die. The earing defect was clearly observed on the recovered parts. Using the experimentally obtained constants of BBC2003 yield criterion for this alloy in VUMAT, deep drawing of the cylindrical cups was simulated. The results demonstrate that the earing profile can successfully be predicted using BBC2003 yield function.
Heat and Mass Transfer
Amir H. Roohi; H. Moslemi Naeini; M. Hoseinpour Gollo; J. Shahbazi Karami; Sh. Imani Shahabad
Abstract
Laser forming is a thermal forming process which uses laser beam irradiation to produce the desired final forms. In this article, the effect of temperature gradient across Al 6061-T6 aluminum sheets on bending angle is studied. Input parameters including laser power, scan velocity, beam diameter, ...
Read More
Laser forming is a thermal forming process which uses laser beam irradiation to produce the desired final forms. In this article, the effect of temperature gradient across Al 6061-T6 aluminum sheets on bending angle is studied. Input parameters including laser power, scan velocity, beam diameter, and sheet thickness are the effective process parameters which influence the temperature gradient. Thus, a set of 81 numerical simulations based on a full factorial design with varying parameters is carried out and temperature gradient across the sheet thickness is measured. Effects of each input parameter on temperature gradient are determined using analysis of variance. Also, an equation is derived which predicts the temperature gradient for any arbitrary input parameter. The validity of the equation is done by comparing actual and predicted results. Numerical simulation is validated by experimental tests, which show a very close agreement. Finally, the effects of temperature gradient for three different sheet thicknesses on a final bending angle are derived. Results demonstrate that increase in temperature gradient across sheet thickness leads to increase in bending angle.
Heat and Mass Transfer
Mohammad Riahi; Mohamad Hoseinpour Gollo; Seiied Nader Ameli Kalkhoran
Abstract
Laser forming is a modern process which is mainly used for forming metals. Different Lasers are used in this regard that includes Nd: YAG and CO2. In this study, forming bi-layer sheets of Aluminum/Ceramic by Laser was investigated. Furthermore, effect of Uniform and Gaussian heat flux distribution in ...
Read More
Laser forming is a modern process which is mainly used for forming metals. Different Lasers are used in this regard that includes Nd: YAG and CO2. In this study, forming bi-layer sheets of Aluminum/Ceramic by Laser was investigated. Furthermore, effect of Uniform and Gaussian heat flux distribution in different power, velocity, and beam diameters on bending angle was studied. FEM simulation indicated that, in the same conditions of analysis, Uniform heat flux distribution caused higher bending angle than Gaussian heat flux distribution. Moreover, the results showed that there was an optimum point at different speeds and laser beam diameters, at which the bending angle was maximum. In order to evaluating the numerical results, a set of experiments was conducted, which showed good agreement.
Forming
Hashem Zamanian; Mehdi Bostan Shirin; Ahmad Assempour
Abstract
In this work, an inverse finite element formulation was modified for considering material anisotropy in obtaining blank shape and forming severity of deep drawn orthotropic parts. In this procedure, geometry of final part and thickness of initial blank sheet were known. After applying ideal forming formulations ...
Read More
In this work, an inverse finite element formulation was modified for considering material anisotropy in obtaining blank shape and forming severity of deep drawn orthotropic parts. In this procedure, geometry of final part and thickness of initial blank sheet were known. After applying ideal forming formulations between material points of initial blank and final shape, an equation system was obtained in terms of unknown initial positions on the blank sheet. Initial positions of material points were obtained by solving this equation system. In this algorithm, the Hill's anisotropic plasticity and associated plastic flow rule were used. Strain distribution on the final part was obtained by comparing the initial blank and final part. The method was applied for the simulation of drawing an orthotropic blank to a rectangular cup. Accuracy of the presented method was evaluated by comparing the results with numerical forward method and experiment results.
Forming
Gh. Payganeh; J. Shahbazi Karami; K. Malekzadeh Fard
Abstract
In this paper, single, bi-layered and three-layered tube hydroforming processes were numerically simulated using the finite element method. It was found that the final bulges heights resulted from the models were in good agreement with the experimental results. Three types of modeling were kept with ...
Read More
In this paper, single, bi-layered and three-layered tube hydroforming processes were numerically simulated using the finite element method. It was found that the final bulges heights resulted from the models were in good agreement with the experimental results. Three types of modeling were kept with the same geometry, tube material and process parameters to be compared between the obtained hydroformed products (branch height, thickness reduction and wrinkling) using different loading path types. The results were also discussed.