Document Type : Review paper


1 National Higher School of Electricity and Mechanics Laboratory of Control and Mechanical Characterization of Materials and Structures, Casablanca, Morocco

2 Higher Institute of Maritims Studies, Laboratory of Mechanics Country,Casablanca,Morocco.

3 National Higher School of Electricity and Mechanics Laboratory of Control and Mechanical Characterization of Materials and Structures, Casablanca,Morocco.


The present work deals with the effect of an external circumferential elliptical crack located at thickness transition on a varied stepped diameter pipe .
The purpose is the application of the extended finite element method
(XFEM) for the calculation of SIF at the thickness transition region of pipe considering internal pressure and compare the effect of the crack between pipes straight and with thickness transition. To model a crack with precision , enrichment functions are used to enrich the displacement approximation, the level set functions are calculated from the crack mesh and definition of the strategy of integration has been performed.
A comparative study is made on SIF of crack defect in straight pipe compared to one with thickness transition using XFEM for the crack and pipe geometrical parameters variations. The result shows that the XFEM is an effective and practical tool for elliptic crack modeling in a pipe with thickness transition because a crack is easily modeled through enrichment functions.The comparison of the SIF of a similar defect between pipes shows that a pressurized pipe with thickness transition is more sensitive to the used cracks.

Graphical Abstract

Numerical modeling and comparison study of elliptical cracks effect on the pipes straight and with thickness transition exposed to internal pressure, using XFEM in elastic behavior.


Main Subjects

[1]  Ali Anderson, T.L.Fracture mechanics: fundamentals and applications 3rded. CRC Press,pp50 ,(2005).


[2] Irwin, G.R., "Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate," Journal of Applied Mechanics, Vol. 24, pp. 361-364, (1957).


[3]  R. Bagheri.Several horizontal cracks in a piezoelectric half-plane under transient loading,Arch Appl Mech .Vol 87,pp 1979–1992. (2017).


[4] R. Bagheri, A. M. Mirzaei .Fracture Analysis in an Imperfect FGM Orthotropic Strip Bonded Between Two Magneto-Electro-Elastic Layers, Iran J SciTechnol Trans MechEng,pp1-19,(2017)


[5] R. Bagheri, M. Noroozi .The linear steady state analysis of multiple moving cracks in a piezoelectrichalf-plane under in-plane electro-elastic loading, Theoretical and Applied Fracture Mechanics 96,pp 334–350, (2018).


[6] Mehrdad Fallah nejad, Rasul Bagheri,MasoudNoroozi .Transient analysis of two dissimilar FGM layers with multiple interface cracks, Structural Engineering and Mechanics, Vol. 67, No. 3 ,pp 277-281, (2018).


[7] HabibAfshar, Rasul Bagheri .Several embedded cracks in a functionally graded piezoelectric strip under dynamic loading , Computers and Mathematics with Applications 76 ,pp 534–550, (2018).


[8] Atluri SN, Kathiresan K. Outer and inner surface flaws in thick-walled pressure vessels. Transcript of the fourth international conference on structure mechanics and reactor technology, San Francisco; (1977).


[9] Kobayashi AS, Polvanich Emery N, Emery AF, Love WJ. Inner and outer cracks in internally pressurised cylinders. J Pressure Vessels Technol  .Vol 99(1),pp 83–9,( 1977).


[10]R.W.E.Shannon. Stress intensity factors for thick-walled cylinders. International Journal of Pressure Vessels and Piping .Vol 2, Issue 1, pp 19-29,( 1974).


[11]Bergman M. : Stress Intensity Factors for circumferential cracks in pipes.Fatigue Fract. Eng. Mater. Struct.Vol. 18, n°10, pp 1155-1172, (1995).


[12]Saïd Hariri, Abdelhadi El Hakimi, Zitouni Azari, Etude numérique et expérimentale de la   nocivité des défauts dans des coques cylindriques et sphériques : aide à la détermination des facteurs de contraintes, Revue de Mécanique Appliquée et Théorique, Vol. 1, 10,pp 791-804 ,(2008)


 [13]French Commissariat for Atomic Energy and Alternative Energies (CEA). ‘Commissariat a` L’Energie Atomique (France)’ 


[15] Chapuliot S, Lacire MH. Stress intensity factors for external circumferential cracks in tubes over a widerange of radius over thickness ratios. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) .Vol.395-106, (1999).


[16] J.M.Melenk,I Babuska,The partition of the unity finite element method :Basic theory and applications ,Computer Methods in Applied Mechanics and Enginneering.Vol 139,pp289-314 ,(2016).


[17] T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing ,Int. J. Numer. Methods Eng.Vol 45 ,pp 601–620 ,(1999).


[18] N. Sukumar, N. Moes, B. Moran, T. Belytschko, Extended finite element method for three dimensional crack modelling , Int. J. Numer. Methods Eng. Vol 48 ,pp 1549–1570, (2000).


[19] Areias, T. Belytschko, A method for dynamic crack and shear band propagation with phantom nodes, Int. J. Numer. Methods Eng.Vol  67,pp 868–893, (2006).


[20] M. Stolarska, D. Chopp, N. Moes, T. Belytschko, Modelling crack growth by level sets in the extended finite element method  ,Int. J. Numer. Methods Eng. Vol 51 ,pp 943–960, (2001).


[21] N. Moes, T. Belytschko, Extended finite element method for cohesive crack growth Eng. Fract. Mech.Vol 69 ,813–833, (2002).


[22]Samaniego, E. & Belytschko, T. Continuum-discontinuum modelling of shear bands. International Journal for Numerical Methods in Engineering, Vol. 62(13), 1857—1872,( 2005).


[23] Benoit Prabel, Tamara Yuritzinn, Thierry Charras, Anita Simatos. Propagation de fissures tridimensionnelles dans des matériaux inélastiques avec XFEM dans Cast3m. 10e colloque national en calcul des structures, May 2011, Giens, France. pp.Clé USB, (2011).


[24] Xin Sun, Guozhong Chai, Yumei Bao, Elastic and elastoplastic fracture analysis of a reactor pressure vessel under pressurized thermal shock loading, European Journal of Mechanics A/Solids Vol 66 ,pp 69-78, (2017).


[25] Kamal Sharma, I. V. Singh, B. K. Mishra, V. Bhasin, Numerical Modeling of Part-Through Cracks in Pipe and Pipe Bend using XFEM, Procedia Materials Science.Vol 6 ,pp72 – 79, ( 2014 ).


[26] Le Delliou ,calcul simplifié du paramètre J pour un défaut axisymétrique débouchant en surface externe d’une transition d’épaisseur.


[27] Abdelkader Saffih , Saıd Hariri ‘Numerical study of elliptical cracks in cylinders with a thickness transition’ International Journal of Pressure Vessels and Piping.P 83 ,35–41, (2006).


[28] Hiroshi Tada.P.C.Paris ,George Rankine Irwin .The stress analysis of cracks ,Handbook 3rded,American Society of Mechanical Engineers ,(2000)


[29] Singh, I.V., Mishra, B.K., Bhattacharya, S., Patil, R.U. The numerical simulation of fatigue crack growth using extended finiteelement method, International Journal of Fatigue 36, pp. 109 119, (2012).


[30] Joumana EL-GHARIB,Macro commande MACR_ASCOUF_MAIL, CODE ASTER Clé : U4.CF.10,Révision : 1122, Document diffusé sous licence GNU FDL (,  p 13,(2009).


[31]French construction code, Construction des Appareils à Pression non soumis à l’action de la flamme,  ‘the Code for Construction of unfired Pressure Vessels ,Edition 2005.Devision 1 ,part C –design and calculation ,section C2 –rules for calculating cylindrical ,spherical and conical shell subjected to internal pressure ,pp 539-622-623.