Document Type : Research Paper

Authors

1 Department of Mechanical Engineering, National Institute of Technology, Kurukshetra, India

2 Department of Mechanical Engineering, UIET, Maharishi Dayanand University, Rohtak, India

Abstract

With the increased diversity of the customer demand and complexity of the product, Inconel 825 is widely used to meet the actual needs, especially in the aerospace industry. It is difficult-to-cut material because of its high toughness and hardness. The present research attempts to optimize the process parameters of wire electric discharge machining during the cutting operation of Inconel 825. The wire electric discharge machining characteristics such as pulse-on time, pulse-off time, spark gap voltage, peak current, wire tension, wire feed are taken into consideration. The performance was measured in terms of material removal rate, surface roughness, and wire wear ratio. The central composite design of response surface methodology at an α value of ± 2 was employed to establish the mathematical model between process parameters and performance measures. A multi-objective particle swarm optimization algorithm has been used to find the optimal solutions called Pareto optimal solutions. It uses the concept of dominance to find the non dominated set in the entire population and the crowding distance approach to finding the best Pareto optimal solutions with a good diversity of objectives. The confirmation experiments of the multi-objective particle swarm optimization algorithm show a significant improvement in material removal rate (27.934 to 31.687 mm2/min), surface roughness (2.689 to 2.448μm), and wire wear ratio (0.027 to 0.030). SEM micrograph studies showed the number of cracks, pockmarks, craters, and pulled out material on the workpiece and wire electrode surface. Energy Dispersive X-ray analysis is performed to investigate the presence of elements on the work surface other than the base material.

Graphical Abstract

Multi-objective particle swarm optimization of WEDM process parameters for inconel 825

Keywords

CAPTCHA Image