Document Type : Research Paper

Authors

1 LESTE, Ecole Nationale d’Ingénieurs de Monastir, Monastir, 5000, Tunisia

2 University of Valenciennes, ENSIAME, Lab. TEMPO (DF2T)- EA4542, Le Mont Houy, F- 59313 Valenciennes Cedex 9, France

3 Département de Génie Electrique, ENIM, Monastir, 5000, Tunisia

Abstract

The technique used to control the airflow is based on the electro-hydrodynamic actuator which is also called plasma actuator. This actuator ensures the airflow control thanks to the electric wind created by the electrical corona discharge. This ionic wind is developed at the profile surface tangential to the initial free airflow so that it has a significant effect on the boundary layer flow. The studied profile was a NACA4412 airfoil. The electro-hydrodynamic actuator was placed at the surface of the NACA profile. The PIV visualizations made at angle of attack of 18° show an earlier flow reattachment to the profile surface when the plasma actuator is active. PIV measurements confirm that downstream of the actuator, when the discharge is ON, the wall velocity gradient is increased as illustrated by the velocity profiles taken at several positions on the NACA4412 wall. Then the plasma actuator can decrease the boundary layer thickness.

Graphical Abstract

Application of the airflow control by electro-hydrodynamic actuator

Keywords

Main Subjects

[1] L. Post and T. C. Corke “Separation control using plasma actuators: Dynamic stall vortex control on oscillating airfoil”, AIAA Journal, Vol. 44, (2006).
[2] T. C. Corke, C. He and M. P. Patel “Plasma Flaps and Slats: an application of weakly-ionized Plasma actuators,” AIAA Paper 2004-2127, (2004).
[3] D. K.Van Ness II, T. C. Corke and S. C. Morris “Turbine Tip Clearance Flow Control using plasma Actuators”, AIAA Paper 2006-21, (2006).
[4] M. Forte, J. Jolibois, E. Moreau and G. Touchard “Optimization of a Dielectric Barrier Discharge actuator stationary and non-stationary measurements of the induced flow velocity- Application to airflow control,” 3rd AIAA Flow Control Conference, AIAA Paper 2006-2863, San Francisco, California, (2006).
[5] J. Jolibois, N. Bénard and E. Moreau “Contrôle de la traînée et de la portance d’un profil NACA0015 par actionneur plasma à décharge à barrière diélectrique”, 43rd colloque d’Aérodynamique Appliquée, Poitiers, (2008).
[6] E. Moreau “Airflow control by non-thermal plasma actuators”, J. Phys. D Appl. Phys. Vol. 40, pp. 605-636, (2007).
[7] T. C. Corke, C. L. Enloe and S. P. Wilkinson “Dielectric barrier discharge plasma actuators for flow control”, Annu. Rev. Fluid Mech, Vol. 42, pp. 505-530, (2010).
[8] T. C. Corke, P. O. Bowles, C. He and E. H. Matlis “Sensing and control of flow separation using plasma actuators”, Phil. Trans. R. Soc. A, Vol. 369, pp. 1459-1475, (2011).
[9] R. Whalley and K. S. Choi “Starting, traveling and colliding vortices: dielectric-barrier discharge plasma in quiescent air”, Phys. Fluids, Vol. 22, 091105, (2010).
[10] R. Whalley and K. S. Choi “Turbulent boundary layer control by DBD plasma: a spanwise travelling wave”, Proc. 5th AIAA Flow Control Conference, Chicago, IL, 28 June–1 July 2010. AIAA Paper 2010-4840, (2010).
[11] K. S. Choi, T. Jukes and R. Whalley, “Turbulent boundary-layer control with plasma actuators”, Phil. Trans. R. Soc. A, Vol. 369, pp. 1443-1458, (2011).
[12] A. Corsini, F. Rispoli and A. santoriello “A variational multiscale higher-order finite element formulation for turbomachinery flow computations”, Journal of Computer methods in applied mechanics and engineering, Vol. 194, pp. 4797-4823, (2005).
[13] W. K. Anderson, R. D. Rausch and D. L. Bonhaus “Implicit/ Multigrid algorithms for incompressible turbulent flows on unstructured grids”, Journal of Computational Physics, Vol. 128, pp. 391-408, (1996).
[14] D. Coles and A. J. wadcock “Flying hot-wire study of flow past an NACA 4412 airflow maximum lift”, AIAA Journal, Vol. 17, pp. 321-329, (1979).
[15] J. Thomas, S. Krist and W. Anderson “Navier-Stokes Computations of Vortical Flows Over Low-Aspect-Ratio Wings”, AIAA Journal, Vol. 28, pp. 205-212, (1990).
[16] R. C. Hastings and B. R. Williams “Studies of the flow field near a NACA 4412 aerofoil at nearly maximum lift”, Aeronautical Journal, Vol. 91, pp. 29-44, (1987).
[17] A. J. Wadcock “Investigation of low-speed turbulent separated flow around Airfoils”, NACA CR 177450, (1987).
[18] K. Jansen “Preliminary large-eddy simulations of flow around a NACA 4412 airfoil using unstructured grids,” Center for turbulent research, Annual Research Briefs, pp. 61-72, (1995).
[19] R. Rey and R. Noguera “Pofils, grilles d’aubes et machines axiales- tome II ”, Aero-hydrodynamique interne des machines, uee pa6 – ifmat et master imce, arts et metiers Paris Tech, pp. 41-42, (2008).
[20] M. Y. Andino, J. M. Ausseur, J. T. Pinier, M. N. Glauser and H. Higuchi “Interactions of Zero Net-Mass Flow Actuators the Flow over NACA 4412 Foils”, 44th AIAA Aerospace Sciences Meeting and Exhibits, Nevada, AIAA paper 2006-105, (2006).
[21] M. N. Glauser, H. Higuchi, J. Ausseur, J. Pinier and H. Carlson “Feedback Control of Separated Flows (Invited)”, 2nd AIAA Flow Control Conference, Portland, Oregon, AIAA Paper 2004-2521, (2004).
[22] J. M. Ausseur, J. T. Pinier, “Towards Closed-Loop feedback Control of the Flow over NACA-4412 Airfoil”, 43ème AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA Paper 2005-343, (2005).
[23] M. N. Glauser, M. J. Young, H. Higuchi and C. E. Tinney “POD Based Experimental Flow Control on a NACA-4412 Airfoil (Invited)”, 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, AIAA Paper 2004-0575, (2004).
[24] S. H. El- Khabiry “Numerical evaluation of corona discharge as a means of boundary layer control and drag reduction,” Ph.D. thesis, Iowa State University, Ames, Iowa, (1994).
CAPTCHA Image