[1] Oyama, T. Nonomura and K. Fujii, “Data Mining of Pareto-Optimal Transonic Airfoil Shapes Using Proper Orthogonal Decomposition”, Journal of Aircraft, Vol. 47, No. 5, pp. 1756-1762, (2010).
[2] Razaghi, N. Amanifard and N. Nariman-Zadeh, “Modeling and Multi-Objective Optimization of Stall Control on NACA 0015 Airfoil with a Synthetic Jet Using GMDH Type Neural Networks and Genetic Algorithms”, IJE Transactions A: Basics, Vol. 22, No.1, pp. 69‒88, (2009).
[3] J. Astrom, and P. Eykhoff, “System identification, a survey”, Automatica, Vol. 7, pp. 123‒162, (1971).
[4] Sanchez, T. Shibata and L. A. Zadeh, Genetic Algorithms and Fuzzy Logic Systems, Vol. 7, World Scientific, Riveredge, NJ, (1997).
[5] Kristinson and G. Dumont, “System identification and control using genetic algorithms”, IEEE Trans. On Sys., Man, and Cybern, Vol. 22, No. 5, pp. 1033‒1046, (1992).
[6] G. Ivakhnenko, “Polynomial Theory of Complex Systems”, IEEE Trans. Syst. Man & Cybern, SMC-1, pp. 364‒378, (1971).
[7] J. Farlow, Self-organizing Method in Modeling: GMDH type algorithm, Marcel Dekker Inc., New York, (1984).
[8] Nariman-Zadeh, A. Darvizeh, M. E. Felezi and H. Gharababaei, “Polynomial modelling of explosive compaction process of metallic powders using GMDH-type neural networks and singular value decomposition”, Model. Simul. Mater. Sci. Eng., Vol. 10, No.6, pp.727‒744, (2002).
[9] Khalkhali and Hamed Safikhani, “Pareto Based Multi-Objective Optimization of Cyclone Vortex Finder using CFD, GMDH Type Neural Networks and Genetic Algorithms”, Engineering Optimization, Vol. 44, No. 1, pp. 105‒118, (2012).
[10] Khalkhali, Mehdi Farajpoor, Hamed Safikhani, “Modeling and Multi-Objective Optimization of Forward-Curved Blades Centrifugal Fans using CFD and Neural Networks”, Transaction of the Canadian Society for Mechanical Engineering, Vol. 35, No. 1, pp. 63-79, (2011).
[11] Atashkari, N. Nariman-Zadeh, M. Go¨lcu, , A. Khalkhali and A. Jamali “Modeling and multi-objective optimization of a variable valve timing spark-ignition engine using polynomial neural networks and evolutionary algorithms”, Energy Conversion and Management, Vol. 48, No. 3, pp.1029–41, (2007).
[12] Abbott and A. E. Von Doenhoff, Theory of Wing Sections, Dover Publications, New York, pp. 61‒62, (1958).
[13] K. Anderson, J. L. Thomas and C. L. Rumsey, “Application of Thin-Layer Navier Stokes Equations near Maximum Lift”, AIAA Journal, Vol. 13, pp. 49-57, (1984).
[14] A. Coello and A. D. Christiansen “Multi objective optimization of trusses using genetic algorithms”, Computers & Structures, Vol. 75, pp. 647‒660, (2000).
[15] Pareto, Cours d’economic ploitique, Lausanne, Rouge, (1896).
[16] E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, 1st ed., Addison-Wesley, New York, (1989).
[17] M. Fonseca and P. J. Fleming, “Genetic algorithms for multi-objective optimization: Formulation, discussion and generalization”, Proc. of the Fifth Int. Conf. on Genetic Algorithms, Forrest S. (Ed.), San Mateo, CA, Morgan Kaufmann, pp. 416‒423, (1993).
[18] Toffolo and E. Benini, “Genetic Diversity as an Objective in Multi-objective evolutionary Algorithms”, Evolutionary Computation, Vol. 11, pp. 151-167, (2003).
Send comment about this article