[1] V. Peshkov, “Second sound in helium II”, J. Phys. USSR, Vol. 8, No.1, pp. 381-388, (1944).
[2] C. C. Ackerman, and R. A. Guyer, “Temperature pulse in dielectric solids”, Ann. Phys., Vol. 50, No. 1, pp. 128-185, (1968).
[3] K. Mitra, S. Kumar, A. Vedaraz, and M. K. Moallemi, “Experimental evidence of hyperbolic heat conduction in processed meat”, ASME J. Heat Transfer, Vol. 117, No. 3, pp. 568-573,(1995).
[4] Y. S. Xu and Z. Y. Guo, “Heat wave phenomena in IC chips”, Int J Heat Mass Transfer, Vol. 38, No. 15, pp. 2919-2922, (1995).
[5] C. Cattaneo, “Sur une forme de l’equation de la chaleur eliminant le paradoxe d’ine propagation instantanee”, C. R. Acad. Sci., Vol. 247, pp. 431-433, (1958).
[6] P. Vernotte, “Les paradoxes de la theorie continue de l’equation de la chaleur”, C. R. Acad. Sci., Vol. 46, No. 22, pp. 3154-3155, (1958).
[7] J. C. Maxwell, “On the dynamical theory of gases”, Philos. Trans. Royal Soc. London, Vol. 157, No. 1, pp. 49-88, (1867).
[8] M. N. Ozisik, D. Y. Tzou, “On the wave theory in heat conduction”, ASME J. Heat Transfer, Vol. 116, No. 3, pp. 526-535, (1994).
[9] W. Kaminski, “Hyperbolic heat conduction equation for materials with a nonhomogenous inner structure”, ASME J. Heat Transfer, Vol. 112, No. 3, pp. 555-560, (1990).
[10] H. Herving, and K. Beckert, “Experimental evidence about the controversy concerning Fourier and non-Fourier heat conduction in materials with a nonhomogeneous inner structure”, Heat and mass Transfer, Vol. 36, No. 5, pp. 387-392, (2000).
[11] W. Roetzel, N. Putra and S. K. Das, “Experiment and analysis of non-fourier conduction in materials with non-homogeneous inner structure”, Int. J. therm. Sci., Vol. 42, No. 3, pp. 541-552, (2003).
[12] E. Ruckenstein, and C. A. Petty, “On the aging of supported metal catalyst due to hot spots”, Chemical Engineering Science, Vol. 27, No. 5, pp. 937-946, (1972).
[13] R. Ocone, and G. Astarita, “Continuous and discontinuous models for transport phenomena in polymers”, AIChE Journal, Vol. 33, No. 3, pp. 423-435, (1987).
[14] A. M. Mullis, “Rapid solidification in the framework of hyperbolic conduction model”, Int. J. Heat Mass Transfer, Vol. 40, No. 17, pp. 4085-4097, (1997).
[15] V. Taitel, “On the parabolic, hyperbolic and discrete formulation of the heat conduction equation”, Int. J. Heat Mass Transfer, Vol. 15, No. 2, pp. 369-371, (1972).
[16] K. J. Baumeister, and T. D. Hamill, “Hyperbolic Heat-Conduction Equation—A Solution for the Semi-Infinite Body Problem”, ASME J. Heat Transfer, Vol. 91, No. 4, pp. 543-548, (1969).
[17] M. N. Ozisik, and B. Vick, “Propagation and reflection of thermal waves in a finite medium”, Int. J. Heat Mass Transfer, Vol. 27, No. 10, pp. 1845-1854, (1984).
[18] D. Y. Tzou, “Thermal Resonance Under Frequency Excitations”, ASME J. Heat Transfer, Vol. 114, No. 2, pp. 310-316, (1992)
[19] D. Y. Tzou, “Damping and Resonance Characteristics of Thermal Waves”, ASME J. Appl. Mech., Vol. 59, No. 4, pp. 862-867, (1992).
[20] J. I. Frankel, B. Vick and M. N. Ozisik, “Flux formulation of hyperbolic heat conduction”, J. Appl. Phys., Vol. 58, No, 1, pp. 3340-3345, (1985).
[21] J. Gembarovic and V. Majernik “Non-Fourier propagation of heat pulse in finite medium”, Int. J. Heat Mass Transfer, Vol. 31, pp. 1073-1081, (1988).
[22] Tang, D.W. and Araki N., “Non-Fourier heat conduction in a finite medium under periodic surface thermal disturbance”, Int. J Heat Mass Transfer. Vol. 39, No. 8, pp. 1585-1590, (1996).
[23] D. W. Tang, and N. Araki, “Non-Fourier Heat Conduction Behavior in Finite Mediums under Pulse Surface Heating”, Materials Sci. and Eng., Vol. 292, No. 2, pp. 173-178, (2000).
[24] G. F. Carey, and M. Tsai, “Hyperbolic heat transfer with reflection”, Numerical Heat Transfer Part A, Vol. 5, No. 3, pp. 309-327, (1982).
[25] D. E. Glass, M. N. Ozisik, D. S. McRae, and B. Vick, “The numerical solution of hyperbolic heat conduction”, Numerical Heat Transfer, Vol. 8, No. 4, pp. 497-504, (1985).
[26] D. E. Glass, M. N. Ozisik, D. S. McRae, B. Vick, “On the numerical solution of hyperbolic heat conduction”, Numerical Heat Transfer, Vol.8, No. 4, pp. 497-504, (1985).
[27] D. E. Glass, and M. N. Ozisik, “Non-Fourier Effects on Transient Temperature Resulting from Periodic On-Off Heat Flux”, Int. J. Heat Mass. Transfer, Vol. 30, No. 8 , pp. 1623-1631, (1987).
[28] H. Q. Yang, “Characteristics-based, high-order accurate and nonoscillatory numerical method for hyperbolic heat conduction”, Numerical Heat Transfer, Part B: Fundamentals, Vol. 18, No. 2, pp. 221-241, (1990).
[29] B. Pulvirenti, A. Barletta, and E. Zanchini “Finite-Difference Solution of Hyperbolic Heat Conduction with Temperature-Dependent Properties”, Numerical Heat Transfer A, Vol. 34, No. 2 , pp. 169-183, (1998).
[30] A. Kar, C. L. Chan, and J. Mazumder, “Comparative studies on nonlinear hyperbolic and parabolic heat conduction for various boundary conditions: analytic and numerical solutions”, ASME J. Heat Transfer, Vol. 114, No. 1, pp. 14-20, (1992).
[31] S. H. Pulko, A. J. Wilkinson, and A. Saidane, “TLM representation of the hyperbolic heat conduction equations”, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 15, No. 3, pp. 303-315, (2002).
[32] A. L. Koay, S. H. Pulko, and A. J. Wilkinson, “Reverse time TLM modeling of thermal problems described by the hyperbolic heat conduction equation", Numerical Heat Transfer, Part B: Fundamentals, Vol. 44, No. 4, pp. 347-363, (2003).
[33] K. K. Tamma and S. B. Railkar, “Specially tailored transfinite element formulations for hyperbolic heat conduction involving non-Fourier effects", Numerical Heat Transfer, Part B, Vol. 15, No. 2, pp. 211-226, (1989).
[34] M. T. Manzari, “A mixed approach to finite element analysis of hyperbolic heat conduction problems”, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 8, No. 1, pp. 83-96, (1998)
[35] X. Ai, and
B. Q. Li, “Discontinuous Finite Element Method for Non-Fourier Heat Conduction Problems”,
Heat Transfer, Vol. 1, No. 1, pp. 237-243,(2003).
[36] W. Wu, and X. Li, “Application of the time discontinuous Galerkin finite element method to heat wave simulation”, International Journal of Heat and Mass Transfer, Vol. 49, No. 9-10, pp. 1679-1684, (2006).
[37] B. L. Wang, and J. C. Han, “A finite element method for non-Fourier heat conduction in strong thermal shock environments”, Front. Mater. Sci. China, Vol. 4, No. 3, pp. 226-233, (2010).
[38] S. C. Mishra, T. B. Pavan Kumar, and B. Mondal, “Lattice Boltzmann Method Applied to the Solution of Energy Equation of a Radiation and Non-Fourier Heat Conduction Problem”, Numerical Heat Transfer A, Vol. 54, No. 8, pp. 798-818, (2008).
[39] V. Vishwakarma, A. K. Das, and P. K. Das, “Analysis of non-Fourier heat conduction using smoothed particle hydrodynamics”, Applied Thermal Engineering, Vol. 31, No. 14-15, pp. 2963-2970, (2011).
[40] J. Sladek, V. Sladek, C. L. Tan, and S. N. Atluri, “Analysis of transient heat conduction in 3D anisotropic functionally graded solids by the MLPG”, CMES, Vol. 32, No. 3, pp. 161-174, (2008).
[41] X. H. Wu, and W. Q. Tao, “Meshless method based on the local weak-forms for steady-state heat conduction problems”, International Journal of Heat and Mass Transfer, Vol. 51, No. 11-12, pp. 3103-3112, (2008).
[42] S. Soleimani, M. Jalaal, H. Bararnia, E. Ghasemi, D. D. Ganji, and F. Mohammadi, “Local RBF-DQ method for two-dimensional transient heat conduction problem”, International Communications in Heat and Mass Transfer, Vol. 37, No. 9, pp. 1411-1418, (2010).
[43] Isa Ahmadi, and M. M. Aghdam, “Heat Transfer in Composite Materials using a New Truly Local Meshless Method”, International Journal of Numerical Methods for Heat and Fluid Flow, Vol. 21, No. 3, pp. 293-309, (2011).
[44] S.N. Atluri and S. Shen, “The Meshless Local Petrov–Galerkin (MLPG) Method” Tech Science Press, Los Angeles, CA, (2002)
[45] D. Y. Tzou, J. K. Chen, “Thermal lagging in random media”, Journal of Thermophysics and Heat Transfer, Vol. 12, No. 4, pp. 567-574, (1998).
[46] A. Moosaie, “Non-Fourier heat conduction in a finite medium with insulated boundaries and arbitrary initial conditions”, Int. Commun. Heat Mass Transfer, Vol. 35, No. 1, pp. 103-111, (2008).
Send comment about this article