[1] S .M. R. Khalili, A. Shokuhfar, and F. Ashenai Ghasemi, “Effect of smart stiffening procedure on low-velocity impact response of smart structures”, J. Mater Proc. Tech., Vol. 190, No. 1-3, pp. 142-152, (2007).
[2] A. Shokuhfar, S. M. R. Khalili, F. Ashenai Ghasemi, K. Malekzadeh, and S. Raissi, “Analysis and optimization of smart hybrid composite plates subjected to low-velocity impact using the response surface methodology (RSM)”, Thin-Wall Struct, Vol. 46, No. 11, pp. 1204-1212, (2008).
[3] M. Meo, F. Marulo, M. Guida, and S. Russo, “Shape memory alloy hybrid composites for improved impact properties for aeronautical applications”, Compos. Struct., Vol. 95, pp.756-766, (2013).
[4] E. H. Kim, I. Lee, J. H. Roh, J. S. Bae, I. H. Choi, and K. N. Koo, “Effects of shape memory alloys on low velocity impact characteristics of composite plate”, Compos. Struct., Vol. 93, No. 11, pp. 2903-2909, (2011).
[5] J. H. Roh and J. H. Kim, “Adaptability of hybrid smart composite plate under low velocity impact”, Compos. Part B, Vol. 34, No. 2, pp.117-125, (2003).
[6] M. Shariyat and R. Jafari, “Nonlinear low-velocity impact response analysis of a radially preloaded two-directional-functionally graded circular plate: A refined contact stiffness approach”, Compos. Part B,Vol. 45, No .1, pp. 981-994, (2013).
[7] M. Shariyat and F. Farzan, “Nonlinear eccentric low-velocity impact analysis of a highly prestressed FGM rectangular plate, using a refined contact law”, Arch. Appl. Mech., Vol. 83, No .4, pp. 623-641, (2013).
[8] M. Shariyat and F. Farzan Nasab, “Low-velocity impact analysis of the hierarchical viscoelastic FGM plates, using an explicit shear-bending decomposition theory and the new DQ method”, Compos. Struct., Vol. 113, No.1, pp. 63-73, (2014).
[9] M. Shariyat and M. Moradi, “Enhanced algorithm for nonlinear impact of rectangular composite plates with SMA wires, accurately tracing the instantaneous and local phase changes”, Compos. Struct.,Vol. 108, pp. 834-847, (2014).
[10] M. Shariyat and S. H. Hosseini, “Accurate eccentric impact analysis of the preloaded SMA composite plates, based on a novel mixed-order hyperbolic global–local theory”, Compos. Struct.,Vol. 124, pp. 140-151, (2015).
[11] D. Helm and P. Haupt, “Shape memory behaviour: modeling within continuum thermo-mechanics”, Int. J. Solids Struct., Vol. 40, No. 4, pp. 827-849, (2003).
[12] H. Tobushi and Y. Shimeno, T. Hachisuka, and K. Tanaka, “Influence of strain rate on super elastic properties of TiNi shape memory alloy”, Mech. Mater., Vol. 30, No. 2, pp. 141-150, (1998).
[13] M. Kadkhodaei, RKND. Rajapakse, M. Mahzoon and M. Salimi, “Modeling of the cyclic thermo-mechanical response of SMA wires at different strain rates”, Smart Mater. Struct., Vol. 16, No. 6, pp. 2091-2101, (2007).
[14] P. C. C. Monteiro, M. A. Savi , T. A. Netto, and P. M. C. Pacheco, “A Phenomenological description of the thermo-mechanical coupling and the rate-dependent behavior of shape memory alloys”, J. Intell. Mater. Sys. Struct., Vol. 20, No. 14, pp. 1675-1687, (2009).
[15] C. Morin, Z. Moumni and W. Zaki, “A constitutive model for shape memory alloys accounting for thermomechanical coupling”, Int. J. Plast., Vol. 27, No. 5, pp. 748-767, (2011).
[16] J. H. Roh, “Thermomechanical Modeling of shape memory alloys with rate dependency on the pseudoelastic behavior”, Math. Prob. Eng., Vol. 20, No. 1, pp.41-65, (2014).
[17] J. Ignaczak and M. Ostoja-Starzewski, Thermoelasticity with finite wave speeds, Oxford University Press, United States, New York, (2010).
[18] M. R. Eslami, R. B. Hetnarski, J. Ignaczak , N. Noda, N. Sumi and Y. Tanigawa, Theory of elasticity and thermal stresses, Springer, (2013).
[19] L. C. Brinson, “One dimensional constitutive behavior shape memory alloys: Thermo-mechanical derivation with non-constant material functions and redefined martensite internal variable”, J. Intell. Mater Syst. Struct., Vol. 4, No. 2, pp. 229-242, (1993).
[20] D. C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications, Springer, (2008).
[21] J. N. Reddy, Mechanics of Laminated Composite Plates and Shells-Theory and Analysis, CRC Press, Boca Raton, (2003).
[22] V. Birman, “An approach to optimization of shape memory alloy hybrid composite plates subjected to low-velocity impact”, Composites: Part B, Vol. 27, No. 5, pp. 439-446, (1996).
[23] J. R. Turner, “Contact on a transversely isotropic half-space, or between two transversely isotropic bodies”, Int. J. Solids Struct., Vol. 16, No. 5, pp. 409-19, (1980).
[24] A. Niknami and M. Shariyat, “Refined constitutive, bridging, and contact laws for including effects of the impact-induced temperature rise in impact responses of composite plates with embedded SMA wires”, Thin-WalledStruct., Vol. 106, pp. 166-178, (2016).
[25] S. H. Yang and C.T. Sun, “Indentation law for composite laminates”, In: Composite materials: testing and design (6th conference), ASTM STP-787, pp. 425- 49, (1982).
[26] M. R. Eslami, Finite elements methods in mechanics, Springer, (2014).
[27] E. Serra and M. Bonaldi, “A finite element formulation for thermoelastic damping analysis”, Int. J. Numer. Meth. Eng., Vol. 78, No. 6, pp. 671-691, (2009).
[28] M. Shariyat and A. Niknami, “Impact analysis of strain-rate-dependent composite plates with SMA wires in thermal environments: Proposing refined coupled thermoelasticity, constitutive, and contact models”, Compos. Struct., Vol. 136, pp. 191-120, (2016).
[29] M. Shariyat and A. Niknami, “Layerwise numerical and experimental impact analysis of temperature-dependent transversely flexible composite plates with embedded SMA wires in thermal environments”, Compos. Struct., Vol. 153, pp. 692–703, (2016).
[30] R. Tiberkak, M. Bachene, S. Rechak and B. Necib, “Damage prediction in composite plates subjected to low velocity impact”, Compos. Struct., Vol. 83, No. 1, pp.73-82, (2008).
[31] L. C. Brinson and R. Lammering, “Finite element analysis of the behavior of shape memory alloys and their applications”, Int. J. Solids Struct., Vol. 30, No. 23, pp.3261-3280, (1993).
Send comment about this article