Document Type : Research Paper


1 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

2 Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran, Iran


In the present study, mechanical properties and low cycle fatigue behavior of a solid-solutionized AA6061 aluminum alloy produced by equal channel angular pressing (ECAP) process were investigated. The grain refinement after two passes of ECAP significantly increased the yield stress and ultimate tensile stress and decreased the ductility of the alloy. However, the improvement of low cycle fatigue strength was not as remarkable as expected. Post-ECAP aging heat treatment to the peak-aging condition imposed a notable change in the strength and ductility of the alloy so that its fatigue strength partly enhanced. An optimized combination of grain refinement and distributed fine precipitates in the matrix of the alloy was achieved by conducting aging heat treatment between passes of ECAP. The proposed procedure was proved to yield the best combination of strength and ductility, better distribution and size of precipitates, and thus a remarkable improvement in the low cycle fatigue response of the investigated material.

Graphical Abstract

Enhancing the low cycle fatigue strength of AA6061 aluminum alloy by using the optimized combination of ECAP and precipitation hardening


Main Subjects

[1] G. E. Totten, C. E. Bates and G. M. Webster, “Physical Metallurgy and Processes”, Handbook of Aluminum, Eds. G. E. Totten, and D. S. MacKenzie, Marcel Dekker Inc., New York, Vol. 1, (2003).
[2] I. J. Polmear, Light Alloys; Metallurgy of the Light Metals, 3rd ed., Arnold, London, (1995).
[3] Y. Estrin, M. Yu. Murashkin, R. Z. Valiev, “Ultrafine grained aluminium alloys: processes, structural features and properties”, Fundamentals of Aluminium Metallurgy: Production, Processing and Applications, Eds. R. Lumley, Woodhead Publishing Limited, Cambridge, pp. 468-503, (2010).
[4] R. Z. Valiev, R. K. Islamgaliev, and I. V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation”, Prog. Mater. Sci., Vol. 45, pp. 103-189, (2000).
[5] D. B. Witkin, E. J. Lavernia, ”Synthesis and mechanical behavior of nanostructured materials via cryomilling”, Prog. Mater. Sci., Vol. 51, pp. 1-60, (2006).
[6] R. Z. Valiev, A. V. Korznikov, and R. R. Mulyukov, “Structure and properties of ultrafine-grained materials produced by severe plastic deformation”, Mater. Sci. Eng., Vol. A 168, pp. 141-148, (1993).
[7] Z. Horita, T. Fujinami, and T. G. Langdon, “The potential for scaling ECAP: effect of sample size on grain refinement and mechanical properties”, Mater. Sci. Eng., Vol. A 318, pp. 34-41, (2001).
[8] J. Y. Huang, Y. T. Zhu, H. Jiang, and T. C. Lowe, “Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening”, Acta Mater., Vol. 49, pp. 1497-1505, (2001).
[9] Z. Horita, T. Fujinami, M. Nemoto, and T.G. Langdon, “Improvement of mechanical properties for Al alloys using equal-channel angular pressing”, J. Mater. Process. Technol., Vol. 117, pp. 288-292, (2001).
[10] A. Shan, I. G. Moon, and J. W. Park, “Estimation of friction during equal channel angular (ECA) pressing of aluminum alloys”, J. Mater. Process. Technol., Vol. 122, pp. 255-259, (2002).
[11] S. Ferrasse, V. M. Segal, K. T. Hartwig, and R .E. Goforth, “Microstructure and properties of copper and aluminum alloy 3003 heavily worked by equal channel angular extrusion”, Metall. Mater. Trans. Vol. A 28, pp. 1047-1057, (1997).
[12] V. M. Segal, “Materials processing by simple shear”, Mater. Sci. Eng. Vol. A 197, pp. 157-164, (1995).
[13] V. M. Segal, “Equal channel angular extrusion: from macromechanics to structure formation”, Mater. Sci. Eng., Vol. A 271, pp. 322-333, (1999).
[14] A. Gholinia, P. B. Prangnell, and M. V. Markushev, “The effect of strain path on the development of deformation structures in severely deformed aluminium alloys processed by ECAE”, Acta Mater., Vol. 48, pp. 1115-1130, (2000).
[15] R. Z. Valiev, and T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement”, Prog Mater Sci., Vol. 51, pp. 881-981, (2006).
[16] B. Huarte, C. J. Luis, I. Puertas, J. León, and R. Luri, “Optical and mechanical properties of an Al–Mg alloy processed by ECAE”, J. Mater. Process. Technol., Vol. 162, pp. 317-326, (2005).
[17] Y. W. Tham, M. W. Fu, H. H. Hng, M.S. Yong, and K. B. Lim, “Bulk nanostructured processing of aluminum alloy”, J. Mater. Process. Technol., Vol. 192, pp. 575-581, (2007).
[18] A. S. M. Agena, “A study of flow characteristics of nanostructured Al-6082 alloy produced by ECAP under upsetting test”, J. Mater. Process. Technol., Vol. 209 , pp. 856-863, (2009).
[19] S. Malekjani, P. D. Hodgson, P. Cizek, I. Sabirov, and T. B. Hilditch, “Cyclic deformation response of UFG 2024 Al alloy”, Int. J. Fatigue, Vol. 33, pp. 700-709 (2011).
[20] Y. Estrin, and A. Vinogradov, “Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: An overview”, Int. J. Fatigue, Vol. 32, pp. 898-907, (2010).
[21] C. S. Chung, J. K. Kim, H. K. Kim, and W. J. Kim, “Improvement of high-cycle fatigue life in a 6061 Al alloy produced by equal channel angular pressing”, Mater. Sci. Eng., Vol. A 337, pp. 39-44, (2002).
[22] P. Huebner, R. Kiessling, H. Biermann, and A. Vinogradov, “Fracture behaviour of ultrafine-grained materials under static and cyclic loading”, Int. J. Mater. Res., Vol. 97, pp. 1566-1570, (2006).
[23] P. Huebner, R. Kiessling, H. Biermann, T. Hinkel, W. Jungnickel, R. Kawalla, H. W. Hoeppel, and J. May, “Static and Cyclic Crack Growth Behavior of Ultrafine-Grained Al Produced by Different Severe Plastic Deformation Methods”, Metall. Mater. Trans., Vol. A 38, pp. 1926-1933, (2007).
[24] R. Lapovok, C. Loader, F. H. Dalla Torre, and S. L. Semiatin, “Microstructure evolution and fatigue behavior of 2124 aluminum processed by ECAE with back pressure”, Mater. Sci. Eng., Vol. A 425, pp. 36-46, (2006).
[25] H. W. Hoeppel, and M. Goeken, “Fatigue behaviour in nanostructured metals”, Nanostructured Metals and Alloys: Processing, Microstructure, Mechanical Properties and Applications, Eds. S. H. Whang, Elsevier Science, pp. 507-541, (2011).
[26] A. Vinogradov, A. Washikita, K. Kitagawa, and V. I. Kopylov, “Fatigue life of fine-grain Al-Mg-Sc alloys produced by equal-channel angular pressing”, Mater. Sci. Eng., Vol. A 349, pp. 318-326, (2003).
[27] A. Vinogradov, and S. Hashimoto, “Multiscale Phenomena in Fatigue of Ultra-Fine Grain Materials-an Overview”, Mater. Trans., Vol. 42, pp. 74-84, (2001).
[28] W. J. Kim, J. K. Kim, T. Y. Park, S. I. Hong, D. I. Kim, Y. S. Kim, and J. D. Lee, “Enhancement of strength and superplasticity in a 6061 Al alloy processed by equal-channel-angular-pressing”, Metall. Mater. Trans. Vol. A 33, pp. 3155-3164, (2002).
[29] H.W. Höppel, M. Kautz, C. Xu, M. Murashkin, T.G. Langdon, R.Z. Valiev, and H. Mughrabi, “An overview: Fatigue behaviour of ultrafine-grained metals and alloys”, Int. J. Fatigue, Vol. 28, pp. 1001-1010, (2006).
[30] H. W. Höppel, and R. Z. Valiev, “On the possabilities to enhance the fatigue properties of ultrafine-grained metals”, Zeitschrift für Metallkunde., Vol. 93, pp. 641-648, (2002).
[31] V. Patlan, A. Vinogradov, K. Higashi, and K. Kitagawa, “Overview of fatigue properties of fine grain 5056 Al-Mg alloy processed by equal-channel angular pressing”, Mater. Sci. Eng., Vol. A 300, pp. 171-182, (2001).
[32] H. Mughrabi, and R. Wang, “Cyclic stress–strain response and high-cycle fatigue behaviour of copper polycrystals”, Basic mechanisms in fatigue of metals, Eds. P. Lukas, J. Polak, Elsevier Academia, pp. 1-16, (1988).
[33] H. Mughrabi, H.W. Höppel, and M. Kautz, “Fatigue and microstructure of extrusion with subsequent high-temperature short-time aging”, Mater. Sci. Eng., Vol. 503, pp. 167-171, (2009).ultrafine-grained metals produced by severe plastic deformation”, Scripta Mater., Vol. 51, pp. 807-812, (2004).
[34] H. Mughrabi, H. W. Höppel, M. Kautz, and R. Z. Valiev, “Annealing treatments to enhance thermal and mechanical stability of ultrafine-grained metals produced by severe plastic deformation”, Zeitschrift für Metallkunde., Vol. 94, pp. 1079-1083, (2003).
[35] K. Hockaufa, T. Niendorf, S. Wagnera, T. Hallea, and L. W. Meyer, “Cyclic behavior and microstructural stability of ultrafine-grained AA6060 under strain-controlled fatigue”, Procedia Engineering, Vol. 2, pp. 2199-2208, (2010).
[36] V. D. Sitdikov, P. S. Chizhov, M. Yu. Murashkin, A. A. Goidenko, R. Z. Valiev, “X-ray studies of dynamic aging in an aluminum alloy subjected to severe plastic deformation”, Mater. Charact., Vol. 110, pp. 222-227, (2015).
[37] A. Vinogradov, S. Nagasaki, V. Patlan, K. Kitagawa, and N. Kawazoe, Nanostruct. Mater., Vol. 11, pp. 925–934, (1999).
[38] M. Furukawa, Y. Iwahashi, Z. Horita, M. Nemoto, and T. G. Langdon,”The shearing characteristics associated with equal-channel angular pressing”, Mater. Sci. Eng., Vol. A 257, pp. 328-332, (1998).
[39] S. S. Manson, and M. H. Hirschberg, “fatigue- an Interdisciplinary approach”, Eds. J. J. Burke, V. Weiss, Syracuse University Press, p 231, (1970).
[40] M. Hockauf, L. W. Meyer, B. Zillmann,
M. Hietschold, S. Schulze, and L. Krüger,
“Simultaneous improvement of strength and ductility of Al-MgSi alloys by
combining equal-channel angular
[41] P. Cavaliere, “Mechanical Properties of Nanocrystalline Materials”, Ed. M. Aliofkhazraei, Handbook of Mechanical Nanostructuring, Wiley–VCH, Weinheim, pp. 3-5, (2015).
[42] MIL-HDBK-5H,“Metallic materials and elements for aerospace vehicle structures”, Military handbook, , Department of defense of the USA, Chapter 3, P. 277, (1998).
[43] K. S. Kumar, H. Van Swygenhoven, and S. Suresh, “Mechanical behavior of nanocrystalline metals and alloys”, Acta. Mater., Vol. 51, pp. 5743–5774, (2003).
[44] D. Steiner, and V. Gerold, “The fatigue behaviour of age-hardened Cu-2at.%Co alloy”, Mater. Sci. Eng., Vol. 84, pp. 77-88, (1986).
[45] C. Calabrese, and C. Laird, “Cyclic stress–strain response of two-phase alloys part I. Microstructures containing particles penetrable by dislocations”, Mater. Sci. Eng., Vol. 13, pp. 141-157, (1974).
[46] C. Calabrese, and C. Laird, “Cyclic stress–strain response of two-phase alloys part II. Particles not penetrated by dislocations”, Mater. Sci. Eng., Vol. 13, pp. 159-174, (1974).
[47] S. Horibe, C. Laird, “Orientation and history dependence of cyclic deformation in Al–Cu single crystals containing θ′ precipitates”, Acta. Metall. Vol. 31, pp. 1567-1579, (1983).