[1] M. N. Hamdan, A. A. Al-Qaisia, “B. O. Al-Bedoor, Comparison of analytical techniques for nonlinear vibrations of a parametrically excited cantilever”, International Journal of Mechanical Sciences, Vol. 43, No. 6, pp. 1521-1542, (2001).
[2] E. C. Haight, W.W. King, “Stability of nonlinear oscillations of an elastic rod”, Journal of the Acoustical Society of America, Vol. 52, No. 3B, pp. 899-911, (1971).
[3] R. S. Haxton, A. D. S. Barr, “The autoparametric vibration absorber”, Transactions of the ASME, Journal of Engineering for Industry, Vol. 94, No. 1, pp. 119-23, (1972).
[4] K. Sato, H. Saito, K. Otomi, “The parametric response of a horizontal beam carrying a concentrated mass under gravity”, Transactions of the ASME Journal of Applied Mechanics, Vol. 44, No. 3, pp. 643-8, (1978).
[5] F.C. Moon, Experiments on chaotic motion of a forced nonlinear oscillator a strange attractors, Journal of Applied Mechanics, Vol. 47, No. 3, pp. 639-44, (1980).
[6] F. Pai, A.H. Nayfeh, “Nonlinear non-planar oscillations of a cantilever beam under lateral base excitations”, Journal of Sound and Vibration, Vol. 25, No. 5, pp. 455-74, (1990).
[7] L. D. Zavodney, A. H. Nayfeh, “The nonlinear response of a slender beam carrying a lumped mass to a principal parametric excitation: theory and experiment”, International Journal of Nonlinear Mechanics, Vol. 24, No. 2, pp. 105-25, (1989).
[8] T. D. Burton, M. Kolowith, “Nonlinear resonance and chaotic motion in a flexible parametrically excited beam”, Proceedings of the Second Conference on Nonlinear Vibrations, Stability and Dynamics of Structures and Mechanisms, Blacksburg, VA, (1988).
[9] H. M. Sedighi, K. H. Shirazi and A. Noghrehabadi, “Application of recent powerful analytical approaches on the non-linear vibration of cantilever beams”, International Journal of Nonlinear Sciences and Numerical Simulation, Vol. 13, No. 7, pp. 487-494, (2012).
[10] H. M. Sedighi, K. H. Shirazi, “A new approach to analytical solution of cantilever beam vibration with nonlinear boundary condition”, Journal of Computational and Nonlinear Dynamics, Vol. 7, No. 3, pp. 1-4, (2012).
[11] H. M. Sedighi, K. H. Shirazi, A. Reza and J. Zare, “Accurate modeling of preload discontinuity in the analytical approach of the nonlinear free vibration of beams”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 226, No. 10, pp. 2474-2484, (2012).
[12] H. M. Sedighi, K. H. Shirazi, M. A. Attarzadeh, A study on the quantic nonlinear beam vibrations using asymptotic approximate approaches, Acta Astronautica, Vol. 91, pp. 245-250, (2013).
[13] H. M. Sedighi, A. Reza, “High precise analysis of lateral vibration of quintic nonlinear beam”, Latin American Journal of Solids and Structures, Vol. 10, No. 2, pp. 441- 452, (2013).
[14] H. M. Sedighi, F. Daneshmand, “Nonlinear transversely vibrating beams by the homotopy perturbation method with an auxiliary term”, Journal of Applied and Computational Mechanics, Vol. 1, No. 1, pp. 1-9 , (2015).
[15] S. J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method, Chapman & Hall/CRC Press, Boca Raton, (2003).
[16] S. J. Liao, K. F. Cheung, “Homotopy analysis of nonlinear progressive waves in deep water”, Journal of Engineering Mathematics, Vol. 45, No. 2, pp. 105-116, (2003).
[17] S. J. Liao, A. Campo, Analytic solutions of the temperature distribution in Blasius viscous flow problems, Journal of Fluid Mechanics. Vol. 453, No. 1, pp. 411-425, (2002).
[18] T. Pirbodaghi, M. T. Ahmadian, M. Fesanghary, “On the homotopy analysis method for non-linear vibration of beams”, Mechanics Research Communications, Vol. 36, No. 2, pp. 143-148, (2009).
[19] R. Wu, J. Wang, J. Du, Y. Hu, H. Hu, “Solutions of nonlinear thickness-shear vibrations of an infinite isotropic plate with the homotopy analysis method”, Numerical Algorithms, Vol. 59, No. 2, pp. 213-226, (2012).
[20] M. Poorjamshidian, J. Sheikhi, S. Mahjoub-Moghadas, M. Nakhaie, “Nonlinear vibration analysis of the beam carrying a moving mass using modified homotopy”, Journal of solid mechanics, Vol. 6, No. 4, pp. 389-396, (2014).
[21] H. M. Sedighi, K. H. Shirazi, J. Zare, “An analytic solution of transversal oscillation of quintic non-linear beam with homotopy analysis method”, International Journal of Non-Linear Mechanics, Vol. 47, No. 7, pp. 777-784, (2012).
[22] S. H. Hoseini, T. Pirbodaghi, M. T. Ahmadian, G.H. Farrahi, “On the large amplitude free vibrations of tapered beams: an analytical approach”, Mechanic Research Communication, Vol. 36, No. 8, pp. 892-897, (2009).
[23] M. R. M. Crespo da Silva, C. C. Glynn, “Nonlinear flexural-flexural-torsional dynamics of inextensible beams, I: equations of motion”, Journal of Structural Mechanics, Vol. 6, No. 4, pp. 437-48, (1978).
[24] A. H. Nayfeh, P. F. Pai, Linear and Nonlinear Structural Mechanics, John Wiley & Sons, Weinheim, (2004).
[25] E. B. Saff, R. S. Varga, Pade and Rational Approximation, Academic Press, New York, (1977).
[26] J. Kallrath., On Rational Function Techniques and Pade Approximants. An Overview, Report, Ludwigshafen, Germany, (2002).
Send comment about this article