[1] SAIDUR, R., LEONG, K. Y., et MOHAMMAD, HaA. A review on applications and challenges of nanofluids. Renewable and sustainable energy reviews, 2011, vol. 15, no 3, p. 1646-1668.
[2] CHOL, S. U. S. et ESTMAN, J. A. Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publications-Fed, 1995, vol. 231, p. 99-106.
[3] CHOI, Stephen US. Nanofluids: from vision to reality through research. Journal of Heat transfer, 2009, vol. 131, no 3, p. 033106.
[4] MURSHED, S. M. S., LEONG, K. C., et YANG, C. Enhanced thermal conductivity of TiO2-water based nanofluids. International Journal of thermal sciences, 2005, vol. 44, no 4, p. 367-373.
[5] HONG, Tae-Keun, YANG, Ho-Soon, et CHOI, C. J. Study of the enhanced thermal conductivity of Fe nanofluids. Journal of Applied Physics, 2005, vol. 97, no 6, p. 064311.
[6] XIE, Huaqing, WANG, Jinchang, XI, Tonggeng, et al. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. Journal of applied physics, 2002, vol. 91, no 7, p. 4568-4572.
[7] KHANAFER, Khalil, VAFAI, Kambiz, et LIGHTSTONE, Marilyn. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International journal of heat and mass transfer, 2003, vol. 46, no 19, p. 3639-3653.
[8] SHEIKHOLESLAMI, M. et GANJI, D. D. Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technology, 2013, vol. 235, p. 873-879.
[9] KUZNETSOV, A. V. et NIELD, D. A. Natural convective boundary-layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences, 2010, vol. 49, no 2, p. 243-247.
[10] HUMINIC, Gabriela et HUMINIC, Angel. Application of nanofluids in heat exchangers: a review. Renewable and Sustainable Energy Reviews, 2012, vol. 16, no 8, p. 5625-5638.
[11] CHENG, Ping et MINKOWYCZ, W. J. Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike. Journal of Geophysical Research, 1977, vol. 82, no 14, p. 2040-2044.
[12] NIELD, D. A. et KUZNETSOV, A. V. The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. International Journal of Heat and Mass Transfer, 2009, vol. 52, no 25-26, p. 5792-5795.
[13] POURMEHRAN, O., RAHIMI-GORJI, M., GORJI-BANDPY, M., et al. Analytical investigation of squeezing unsteady nanofluid flow between parallel plates by LSM and CM. Alexandria Engineering Journal, 2015, vol. 54, no 1, p. 17-26.
[14] BUONGIORNO, Jacopo. Convective transport in nanofluids. Journal of heat transfer, 2006, vol. 128, no 3, p. 240-250.
[15] KUZNETSOV, Andrey V. Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: oscillatory instability. Nanoscale research letters, 2011, vol. 6, no 1, p. 100.
[16] XU, Hang et POP, Ioan. Fully developed mixed convection flow in a horizontal channel filled by a nanofluid containing both nanoparticles and gyrotactic microorganisms. European Journal of Mechanics-B/Fluids, 2014, vol. 46, p. 37-45.
[17] DAS, Kalidas, DUARI, Pinaki Ranjan, et KUNDU, Prabir Kumar. Nanofluid bioconvection in presence of gyrotactic microorganisms and chemical reaction in a porous medium. Journal of Mechanical Science and Technology, 2015, vol. 29, no 11, p. 4841-4849.
[18] GHORAI, S. et HILL, N. A. Development and stability of gyrotactic plumes in bioconvection. Journal of Fluid Mechanics, 1999, vol. 400, p. 1-31.
[19] KUZNETSOV, A. V. New developments in bioconvection in porous media: bioconvection plumes, bio-thermal convection, and effects of vertical vibration. In : Emerging Topics in Heat and Mass Transfer in Porous Media. Springer, Dordrecht, 2008. p. 181-217.
[20] MOSAYEBIDORCHEH, S., TAHAVORI, M. A., MOSAYEBIDORCHEH, T., et al. Analysis of nano-bioconvection flow containing both nanoparticles and gyrotactic microorganisms in a horizontal channel using modified least square method (MLSM). Journal of Molecular Liquids, 2017, vol. 227, p. 356-365.
[21] RAMLY, N. A., SIVASANKARAN, S., et NOOR, N. F. M. Zero and nonzero normal fluxes of thermal radiative boundary layer flow of nanofluid over a radially stretched surface. Scientia Iranica, 2017, vol. 24, no 6, p. 2895-2903.
[22] RAMLY, N. A., SIVASANKARAN, S., et NOOR, N. F. M. Numerical solution of Cheng-Minkowycz natural convection nanofluid flow with zero flux. In : AIP Conference Proceedings. AIP Publishing, 2016. p. 030020.
[23] HAQ, Rizwan Ul, NOOR, N. F. M., et KHAN, Z. H. Numerical simulation of water based magnetite nanoparticles between two parallel disks. Advanced Powder Technology, 2016, vol. 27, no 4, p. 1568-1575.
[24] ADOMIAN, G. Solving Frontier Problems of Physics: The Decomposition Method. 1994. Klumer, Boston
[25] SARI, Mohamed Rafik, KEZZAR, Mohamed, et ADJABI, Rachid. A Comparison of Adomian and Generalized Adomian Methods in Solving the Nonlinear Problem of Flow in Convergent-Divergent Channels. Applied Mathematical Sciences, 2014, vol. 8, no 7, p. 321-336.
[26] KEZZAR, Mohamed et SARI, Mohamed Rafik. Application of the generalized decomposition method for solving the nonlinear problem of Jeffery–Hamel flow. Computational Mathematics and Modeling, 2015, vol. 26, no 2, p. 284-297.
[27] KEZZAR, Mohamed et SARI, Mohamed Rafik. Series Solution of Nanofluid Flow and Heat Transfer Between Stretchable/Shrinkable Inclined Walls. International Journal of Applied and Computational Mathematics, 2017, vol. 3, no 3, p. 2231-2255.
[28] NOOR, Noor Fadiya Mohd, ISMOEN, Muhaimin, et HASHIM, Ishak. Heat-transfer analysis of mhdflowdue to a permeable shrinking sheet embedded in a porous medium with internal heat generation. Journal of Porous Media, 2010, vol. 13, no 9.
[29] NOOR, N. F. M. et HASHIM, Ishak. MHD viscous flow over a linearly stretching sheet embedded in a non-Darcian porous medium. J. Porous Media, 2010, vol. 13, no 4, p. 349-355.
[30] NOOR, N. F. M., KECHIL, S. Awang, et HASHIM, Ishak. Simple non-perturbative solution for MHD viscous flow due to a shrinking sheet. Communications in Nonlinear Science and Numerical Simulation, 2010, vol. 15, no 2, p. 144-148.
[31] KUZNETSOV, A. V. et NIELD, D. A. The Cheng–Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid: a revised model. International Journal of Heat and Mass Transfer, 2013, vol. 65, p. 682-685.
[32] FEYNMAN, Richard P., LEIGHTON, Robert B., et SANDS, Matthew. The feynman lectures on physics; vol. i. American Journal of Physics, 1965, vol. 33, no 9, p. 750-752.
[33] VIGOLO, Daniele, RUSCONI, Roberto, STONE, Howard A., et al. Thermophoresis: microfluidics characterization and separation. Soft Matter, 2010, vol. 6, no 15, p. 3489-3493.
Send comment about this article